Search for η_b in two-photon collisions with L3 Detector at LEP

Carmen Palomares CERN On behalf of L3 Collaboration

26/07/2002

The Charmonium System

CC

26/07/2002

26/07/2002

η_b ($b\bar{b}$) 1S state, J^{PC} 0⁻⁺ not yet seen

* Mass should be close to Υ (1S) mass (9.46 GeV)

hypothesis	m(η _b) (GeV)	
QCD calculations		
Lattice NRQCD Lattice potential 1/m expansion Potential model pQCD	9.38 9.37 9.40 9.36 9.41	A.El-Khadra hep-ph/9508266 G.S. Bali et al. Phys Rev D56 (97) S.Narison, Phys Lett B387 (96) T. Barnes hep-hp/0103142 N.Brambilla et al. Phys Lett B513

26/07/2002

Experimental expectations

 ★ High statistics of γγ collisions at LEP II In L3 : L_{e+e-} = 610 pb⁻¹, 189 GeV < √s < 209 GeV
 ★ σ_{e⁺e⁻→e⁺e⁻R} = f(m_R, Γ_{γγ}(R)) = κ · Γ_{γγ}

QCD Potential model $\rightarrow \Gamma_{\gamma\gamma}(\eta_b) \sim 0.5 \text{ keV}$ (predictions for η_c compatible with the measurements)

 $\sigma(e^+e^-\rightarrow e^+e^-\eta_b) = 0.26 \text{ pb} \text{ at } \langle \sqrt{s} \rangle = 197 \text{ GeV}$

 $\begin{array}{l} \eta_b \text{ decays:} \\ \text{BR(4 charged particles)} \sim 3\% \rightarrow 5 \text{ expected events} \\ \text{A.Böhrer, Search for the } \eta_b \text{ meson, PHOTON 2001} & (eff = 100\%) \\ \text{26/07/2002} & \text{C.Palomares / ICHEP02} \end{array}$

Previous searches

- □ In radiative decay of the $\Upsilon(3S) \rightarrow \gamma \eta_b$ (CUSB & CLEO) >CLEO(1994)
 - BR(Υ (3S) $\rightarrow \pi \pi h_b$) x BR($h_b \rightarrow \gamma \eta_b$) < 0.1% at 90% C.L. for η_b mass range from 9.32 GeV to 9.46 GeV Phys. Rev. D49(1994) 40

□In two-photon collisions

- > ALEPH(2002)
 - * $\Gamma_{\gamma\gamma}(\eta_b)$ x BR(4 charged part) < 48 eV at 95% C.L. 0 events found (background: 0.30±0.25)
 - * $\Gamma_{\gamma\gamma}(\eta_b)$ x BR(6 charged part) < 132 eV at 95% C.L. 1 candidate m=9.30±0.04 GeV (background: 0.70±0.34)

Phys. Lett. B530 (2002)

26/07/2002

Selection

Studied decays

4 charged particles and 4 charged particles + π° Charged particles 6 charged particles and 6 charged particles + π° are π and/or K

- I. Preselection: to define good tracks with p_T >150 MeV and e.m. cluster compatible with photons from π° (E_{γ}> 80 MeV)
- II. Selection: γγ → R→ n charged particles
 n tracks (no other accidental tracks must be present)
 Σ p_T² < 0.1 GeV²
 Reject: photon conversions, cut: m(e⁺e⁻)>50 MeV

 $\gamma\gamma \rightarrow \tau^+\tau^-$, cut: m(3π) > 1.9 GeV

> 2 bumps from π° (mass($\gamma\gamma$) = π° mass (105-165 MeV))

26/07/2002

Results

$W_{\gamma\gamma}$ between 9 —10 GeV

Channel	Selected Events	Eff(%)	Expected Background	Reconstructed Mass (GeV)
4 tracks	1	4.9	0.25±0.06	9.9±0.3
4 tracks +π ^o	0	1.9	0.09±0.01	
6 tracks	1	3.6	0.65±0.06	9.4±0.3
6 tracks $+\pi^{\circ}$	1	0.9	0.29±0.07	9.9±0.3

26/07/2002

Invariant mass distribution

4 charged particles

4 charged particles + π^{0}

26/07/2002

Invariant mass distribution

6 charged particles

6 charged particles + π^{o}

26/07/2002

Invariant mass distribution

26/07/2002

Invariant mass of the candidates

Average reconstructed mass of the most significant candidates:

$M = 9.7 \pm 0.3 \text{ GeV} *$

* Mass resolution due to detector effects ~ 300 MeV π/K misidentification ~ 50 MeV

26/07/2002

Possible Interpretations

The observation is found to be compatible with the background expectation (expectation 1.3) If we assume the production of $\eta_{\rm b}$ resonance in the invariant mass range 9-10 GeV: Upper limits on $\Gamma_{\gamma\gamma}(\eta_b)$ xBR: $\Gamma_{\gamma\gamma}(\eta_b) \times BR(4 \text{ charged part.})$ < 0.3 keV $\Gamma_{\gamma\gamma}(\eta_b) \times BR(4 \text{ charged part.} + \pi^\circ) < 0.5 \text{ keV}$ < 0.4 keV $\Gamma_{\gamma\gamma}(\eta_b) \times BR(6 \text{ charged part.})$ $\Gamma_{\gamma\gamma}(\eta_b) \times BR(6 \text{ charged part.} + \pi^\circ) < 1.4 \text{ keV}$ At 95% of C.L

Assuming the same BR for each channel: $\Gamma_{\gamma\gamma}(\eta_b) \times BR(all channels) < 0.2 \text{ keV}$ at 95% of C.L.

Conclusions

 We find 3 candidates in the W_{γγ} range 9-10 GeV
 They are compatible with background (1.3 events) The observation is also compatible with a signal.
 The analysis will be slightly improved to increase the sensitivity

