Recent results from the K2K experiment

Yoshinari Hayato (KEK/IPNS) for the K2K collaboration

Contents

- Introduction
- Summary of the results in 2001
- Overview of the new analysis (Number of events + Spectrum)
- Flux measurements at KEK
- Oscillation analysis and results
- Summary

K2K Collaboration

High Energy Accelerator Research Organization(KEK)
Institute for Cosmic Ray Research(ICRR), University of Tokyo

Kobe University
Kyoto University
Niigata University
Okayama University
Tokyo University of Science
Tohoku University

Chonnam National University
Dongshin University
Korea University
Seoul National University

Boston University
University of California, Irvine
University of Hawaii, Manoa
Massachusetts Institute of Technology
State University of New York at Stony Brook
University of Washington at Seattle

Warsaw University Solton Institute

Introduction

Principle of the long baseline experiment

Oscillation Probability=
$$\sin^2 2\theta \cdot \sin^2 \left(\frac{1.27\Delta m^2 L}{E_v}\right)$$

long baseline experiment

Fixed distance

Compared to

the NULL oscillation case,

- 1)Reduced number of events
- 2)Distorted energy spectrum

 /) dip around 0.6 ~ 0.7 GeV

The K2K experiment

v beamline

beam monitors

near detectors

Neutrino beam

 $< E_{\nu} > \sim 1.3 \text{GeV}$ almost pure $\nu_{\mu} (\sim 98\%)$

Beam monitors & near detectors

- beam direction
- π monitor
- v_{μ} flux & spectrum

Far detector

• v_{μ} flux & spectrum

Near neutrino detectors

1kt water Cherenkov detector water target (1kt)

(25t fid. vol.) same type as SK

Fine grained detectors

- Scintillating fiber tracker (SciFi)
- Muon range detector (MRD)

(6t fid. vol.) water target

CCQE identification

Iron target (330t fid. vol.) v beam monitor (mom. & dir.)

Super-Kamiokande (Far detector)

Atmospheric v ~8 events/day (FCFV)

→ accidental coincidence ~10⁻⁵ events/day

Event selection at Super-Kamiokande

From June '99 to July '01 (4.8 x 10^{19} protons on target)

∆(T) μs

Summary of K2K results in 2001

From June '99 to July '01

accumulated number of protons

4.8x10¹⁹ POT for the analysis

Neutrino beam was very stable

direction of the beam: controlled less than 1mrad.

```
confirmed by \mu profile monitor (\pi * \mu \text{ decay})
muon range detector (MRD)
(\nu \text{ interaction vertex})
```

• energy spectrum of ν

confirmed by 1kt water Cherenkov detector (1kt) & MRD

Summary of K2K results in 2001

Neutrino flux @ SK

estimated by Monte-Carlo confirmed by π monitor

normalization was done by 1kt water Cherenkov detector [number of protons was measured by Current Transformer (CT)]

of FCFV events in Super-K

Observed: $56 \leftarrow Expected: 80^{+7.3}_{-8.0}$

→ Probability of null oscillation < 3%

→ Next step

Full and Improved error estimations and spectrum shape analysis

Neutrino interactions around 1GeV

Charged current quasi-elastic scattering (QE)

 E_{ν} can be reconstructed from P_{μ} and θ_{μ} .

p_μ: muon momentum

 θ_{u} : muon angle

1kt : single ring μ -like FCFV events

SciFi: QE-like 2track events

(when protons are identified)

or single track events

(when protons are not observed)

pion productions

lkt : FCFV events

(single-ring or multi-rings)

SciFi: non-QE-like events

Flow of the oscillation analysis

Observed quantities at the near detectors

 (P_{μ}, θ_{μ}) for each event category

Neutrino interaction models

Obtain neutrino spectrum at near detectors

Near to Far extrapolation $(R_{FN}(E_{v}))$

Predict neutrino spectrum without oscillation ($\phi_{SK}(E_{\nu})$)

Observables at SK

number of events

- (N_{SK})
- Reconstructed energy of v (E_v^{rec})

Fit the observed results at SK with $(\sin^2 2\theta, \Delta m^2)$

Use maximum likelihood fit

QE and non-QE events

QE/non-QE selection

- 1. Select 2track events
- 2. Select muon track
- 3. Calculate expected direction of proton θ_{exp} (assuming **QE** interaction)
- 4. Compare with the observed direction of 2^{nd} track θ_{obs}

$$\Delta\theta_{p} = |\theta_{exp} - \theta_{obs}|$$

in SciFi 2track events

SciFi 2 track $cos(\Delta\Theta_p)$ distribution

Used data for $\phi_{\text{near}}(E_{\nu})$

KT

Fully Contained Fiducial Volume (FCFV) events

- (0) No. of events (Evis >100MeV)
- (1) Single μ -like events

<u>SciFi</u>

- (2) 1-track μ events
- (3) 2-track QE-like events
- (4) 2-track non QE-like events

 \rightarrow 4 sets of (p_µ, θ _µ) distributions

Pion monitor & Beam simulation

 π distribution in (p_{π}, θ_{π})

 \rightarrow flux estimation $\phi_{near}(E_v)$ w. error

 ν flux $\phi_{\text{near}}(E_{\nu})$ (8 bins) ν interaction model (parameterized as QE/non-QE ratio)

Fitting method (v flux at KEK)

Fitted results (1kt)

 p_{μ} and θ_{μ} distributions of 1kt 1ring μ -like FCFV events

Both distributions agree well with the fitted MC.

Fitted results (SciFi) Very good agreements

Reconstruction of neutrino energy at SK

Use single-ring μ -like FCFV (1R μ) events

Assuming QE interaction and reconstruct E_v

(~50% of K2K 1Rμ events are CCQE)

$$\mathsf{E}_{\nu}^{\text{rec}} = \frac{\mathsf{m}_{n} \mathsf{E}_{\mu} - \mathsf{m}_{\mu}^{2} / 2}{\mathsf{m}_{n} - \mathsf{E}_{\mu} + \mathsf{P}_{\mu} \cos \theta_{\mu}}$$

E_u: muon energy

p_u: muon momentum

 θ_{μ} : muon angle

Oscillation analysis

1) Used data sets

1. Number of events June '99 - July '01 FCFV events (56 events)

2. Spectrum shape Nov. '99 - July '01 1Rµ events (29 events)

2) Analysis methods

1.Maximum Likelihood method

$$L_{tot} = L_{norm}(f) L_{shape}(f) L_{syst}(f)$$
Constraint term for systematic parameters. (error matrices)

Normalization term $(N_{exp} = 80.1^{+6.2}_{-5.4})$

2.different treatment of systematic term.

Generate many MC samples. (changing systematic parameters within the error.)

L_{tot} = weighted mean of L for the MC samples

Allowed ∆m² by N_{SK} and shape analysis

 N_{SK} and shape analysis indicate the same Δm^2 region for $\sin^2 2\theta = 1$

Allowed regions

 $\Delta m^2 = 1.5 \sim 3.9 \times 10^{-3} \text{ eV}^2$ $@\sin^2 2\theta = 1(90\%\text{CL})$

Best fit parameters

```
 \begin{cases} = (1.0 , 2.8 \times 10^{-3} \text{ eV}^2) \\ = (1.0 , 2.8 \times 10^{-3} \text{ eV}^2) \\ = (1.0 , 2.7 \times 10^{-3} \text{ eV}^2) \\ \text{[Method-2]} \end{cases}
```

Best fit results

Reconstructed energy of neutrino for 1Rµ

Best fit parameters $(\sin^2 2\theta, \Delta m^2)$ = $(1.0, 2.8 \times 10^{-3} \text{ eV}^2)$

and N_{SK}

- N_{SK}
 Expected (W/osc.) = 54
 Observed = 56
- ShapeKS test79%

Very good agreements

Both shape and N_{sk}

Null oscillation probability

Use ∆log(likelihood) from best fit point in the physical region

Probability of null oscillation is less than 1%.

Summary

K2K Oscillation analysis on June'99 ~ July '01 data

Full and Improved error estimations and spectrum shape analysis

```
Use both Number of events + Spectrum shape (June '99 – July '01) (Nov. '99 – July '01)
```

- Null oscillation probability is less than 1%.
- Spectrum shape distortion and observed # of events @SK indicates consistent oscillation parameter regions.
- Oscillation parameters ($\sin^2 2\theta$ and Δm^2) are consistent with the atmospheric ν results.

```
\Delta m^2 = 1.5 \sim 3.9 \times 10^{-3} \text{ eV}^2 \text{ @sin}^2 2\theta = 1(90\%\text{CL})
(c.f. ATM v : \Delta m^2 = 1.6 \sim 3.9 \times 10^{-3} \text{ eV}^2 \text{ @sin}^2 2\theta = 1(90\%\text{CL}))
```