Atmospheric and Long-Baseline ν_e Oscillations are Suppressed Suppressed Short-Baseline m_{light} neutrinos $\stackrel{<}{_\sim}$ few eV ν_e and ν_μ Oscillations Atmospheric $\nu_{\mu} \rightarrow \nu_{\tau}$ Solar $\nu_e \rightarrow \nu_\mu, \nu_\tau$ INFN, Sez. di Torino, and Dip. di Fisica Teorica, Università di Torino FACTS **NEUTRINO MASSES AND MIXINGS** ICHEP 2002, Amsterdam, 24-31 July 2002 **CURRENT STATUS OF** giunti@to.infn.it **Carlo Giunti** Nature of Neutrinos (Dirac or Majorana)? Absolute Scale of Neutrino Masses? Number of Massive Neutrinos? Active \rightarrow Sterile Transitions? LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$? MYSTERIES

[SNO, PRL 89 (2002) 011302]

 $\Phi_{hep} < 7.9 \ \Phi_{hep}^{
m SSM}$ (90% CL) [Smy (SK), Neutrino 2002] $\mathcal{A}_{\rm ND}^{\rm SNO}=0.070\pm0.051$ $\mathcal{A}_{ND}^{SK}=0.021\pm0.024$ [SK, PLB 539 (2002) 179] SK & SNO \implies very small night-day asymmetry SK & SNO \implies no spectral distortion $SK \implies$ no seasonal variation

MAIN (Experiment	CHARACTERISTI Reaction	$E_{\rm th}$	- SOLAR Operating	
2				
SAGE			1990 - 2001	
GALLEX	$\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$	0.233	1991 - 1997	
GNO			1998 - 2000	
Homestake	$\nu_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^-$	0.814	1970 - 1994	
Kamiokande		6.75	1987 - 1995 2079 days	
Super-Kam.	$ \nu_e + e \rightarrow \nu_e + e $	4.75	1996 – 2001 1496 days	
	$\nu_e + d \rightarrow p + p + e^-$	6.9		
SNO	$\nu + d \rightarrow p + n + e^-$	2.2	1999 – 2002 306.4 days	
	$\nu + e^- \rightarrow \nu + e^-$	5.2		

THE TRIUMPH OF SNO

Sudbury Neutrino Observatory, 1 kton of $D_2O,~T_{eff} \geq 5~MeV \Rightarrow \nu_{^8B}$

$$\frac{\text{Super-Kamiokande}}{\text{22.5 ktons of H}_2\text{O}, E_{\nu}^{\text{th}} \simeq 4.75 \,\text{MeV} \Rightarrow \nu_{^8\text{B}}}$$
$$\frac{\text{SK}}{R_{\text{ES}}^{\text{SK}}} \equiv \Phi_{\text{ES}}^{\text{SK}} / \Phi_{\nu_e}^{\text{SSM}} = 0.465 \pm 0.015 \quad \text{[sk, PLB 539 (2002) 179]}$$

FUTURE: KamLAND (LMA), BOREXINO (LOW), ...

[SK, PLB 539 (2002) 179]

worry: LOW is disfavored because LMA fit is too good!

dof = $72 = 17 + 17(SNO) + 19 + 19(SK) + 3(HOM + GAL + SAG) - 3(\Delta m^2 + \tan^2 \vartheta + \Phi_{8B})$

LMA	$\chi^2_{ m min} = 57.0$	$\Delta m^2 = 5.0 imes 10^{-5} \mathrm{eV}^2$, $\tan^2 artheta = 0.34$
LOW	$\chi^2_{ m min} = 67.7$	$\Delta m^2 = 1.3 imes 10^{-7} \mathrm{eV}^2$, $\tan^2 artheta = 0.55$

[SNO, PRL 89 (2002) 011302]

ATMOSPHERIC NEUTRINOS

per-Kamiokande Up-Down asymmetry: $A_{\mu}=\left(rac{U-D}{U+D}
ight)_{\mu}=-0.311\pm0.043\pm0.01$ (7 σ)

[Giacomelli, Giorgini, Spurio, hep-ex/0201032]

Ω
Giunti,
ICHEP
2002,
Amsterdam,
July
2002 -
- 11

CNGS: ICARUS: $\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu} \rightarrow \nu_{\tau}$ OPERA: $\nu_{\mu} \rightarrow \nu_{\tau}$ MINOS: $\nu_{\mu} \rightarrow \nu_{\mu}, \nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu} \rightarrow \nu_{e,\mu,\tau}$ (NC) K2K: $\nu_{\mu} \rightarrow \nu_{\mu}$ FUTURE

[Shiozawa (SK), Neutrino 2002]

[Smy (SK), Moriond 2002]

	$\cos^{2\theta}=0.33; \alpha=1.1x10^{-2}eV^{2}$	$\cos^2\theta = 0.47; \alpha = 3.0 \times 10^{-3} eV^2$	$\sin^2 2\theta = 0.90; \alpha = 5.3 \times 10^{-4}$
	14.1	81.1	67.1
	3.8	9.0	8.2

Decay to V_s

Decay

Ħ

<mark>ک</mark>

 $\sin^2 2\theta = 0.96$; $\Delta m^2 = 3.6 \times 10^{-3} eV^2$

19.0

4.4

 $\sin^2 2\theta = 0.97$; $\Delta m^2 = 5.0 \times 10^{-3} eV^2$ 79.3 8.9

 $\sin^2 2\theta = 1.00; \ \Delta m^2 = 2.5 \times 10^{-3} eV^2 \ 0.0 \ 0.0$

Best fit

 $\Delta \chi^2$

q

e e لح ح ode

Nature of atmospheric Oscillation

THREE-NEUTRINO MIXING

$$\Delta m_{21}^2 \ll |\Delta m_{31}^2|$$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$\int_{ATM} CHOOZ: \begin{cases} \Delta m_{CHOOZ}^2 = \Delta m_{31}^2 = \Delta m_{ATM}^2 \\ \sin^2 2\vartheta_{CHOOZ} = 4|U_{e3}|^2(1 - |U_{e3}|^2)) \\ \downarrow \\ U_{e3}|^2 \lesssim 4 \times 10^{-2} \text{ for } \Delta m_{ATM}^2 \simeq 2.5 \times 10^{-3} \text{ eV}^2 \\ \text{confirmed by Palo Verde } [PRD 64 (2001) 112001] \\ \end{bmatrix}$$
SOLAR AND ATMOSPHERIC ν OSCILLATIONS ARE PRACTICALLY DECOUPLED! TWO-NEUTRINO SOLAR and ATMOSPHERIC

 ν OSCILLATIONS ARE OK!

 $\sin^2 \vartheta_{\rm SUN} = \frac{|U_{e2}|^2}{1 - |U_{e3}|^2} \simeq |U_{e2}|^2 \quad \sin^2 \vartheta_{\rm ATM} = \frac{|U_{\mu3}|^2}{1 - |U_{e3}|^2} \simeq |U_{\mu3}|^2 \quad \text{[Bilenky, Giunti, PLB 444 (1998) 379]}$

$LMA \Rightarrow \tan^2 \vartheta_{\mathrm{S}} \simeq 0.34 \Rightarrow \vartheta_{\mathrm{S}} \simeq \frac{\pi}{6} \Rightarrow U \simeq \begin{pmatrix} \frac{\sqrt{3}}{2} \\ -\frac{1}{2\sqrt{2}} \\ \frac{1}{2\sqrt{2}} \end{pmatrix}$	$\frac{\Phi_{\rm CC}^{\rm SNO}}{\Phi_{\nu_{\rm e}}^{\rm SSM}} \simeq \frac{1}{3} \Longrightarrow \Phi_{\nu_{\rm e}} \simeq \Phi_{\nu_{\mu}} \simeq \Phi_{\nu_{\tau}} \text{ for } E \gtrsim 6 \mathbb{N}$	Solar $ u_e ightarrow u_a^{(\mathrm{S})} \simeq rac{1}{\sqrt{2}} \left(u_\mu - u_ au ight)$	$\sin^2 2\vartheta_{\mathrm{A}} \simeq 1 \Rightarrow \vartheta_{\mathrm{A}} \simeq \frac{\pi}{4} \Rightarrow U \simeq egin{pmatrix} c_{artheta_{\mathrm{S}}} & s_{artheta_{\mathrm{S}}} \ -s_{artheta_{\mathrm{S}}}/\sqrt{2} & c_{artheta_{\mathrm{S}}}/\sqrt{2} \ s_{artheta_{\mathrm{S}}}/\sqrt{2} & -c_{artheta_{\mathrm{S}}}/\sqrt{2} & -c_{artheta_{\mathrm{S}}}/\sqrt{2} \ c_{artheta_{\mathrm{S}}}/\sqrt{2} & -c_{artheta_{\mathrm{S}}}/\sqrt{2} & -c_{artheta_{\mathrm{S}}}/\sqrt{2} & -c_{artheta_{\mathrm{S}}}/\sqrt{2} \ c_{artheta_{\mathrm{S}}}/\sqrt{2} & -c_{artheta_{\mathrm{S}}}/\sqrt{2} & -c_{artheta}/\sqrt{2} & -c_{artheta_{\mathrm{S}}}/\sqrt{2} & -c_{artheta}/\sqrt{2} & -c_{artheta$	$U_{e3} ^2 \ll 1 \Rightarrow U \simeq egin{pmatrix} c_{artheta_{ m S}} & c_{artheta_{ m S}} & s_{artheta_{ m S}} & 0 \ -s_{artheta_{ m S}} c_{artheta_{ m A}} & c_{artheta_{ m S}} c_{artheta_{ m A}} & s_{artheta_{ m A}} \ s_{artheta_{ m A}} & s_{artheta_{ m A}} \end{pmatrix} \Rightarrow egin{pmatrix} u_e = & c_{artheta_{ m S}} c_{artheta_{ m A}} & s_{artheta_{ m A}} \\ s_{artheta_{ m S}} s_{artheta_{ m A}} & -c_{artheta_{ m S}} s_{artheta_{ m A}} & c_{artheta_{ m A}} \end{pmatrix} \Rightarrow egin{pmatrix} u_e = & c_{artheta_{ m S}} c_{artheta_{ m A}} & c_{artheta_{ m A}} \\ u_a^{(m S)} \end{array}$
$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - 1$	$\gtrsim 6{ m MeV}$		$egin{array}{cccc} s_{artheta_{ m S}} & 0 \ c_{artheta_{ m S}}/\sqrt{2} & 1/\sqrt{2} \ c_{artheta_{ m S}}/\sqrt{2} & 1/\sqrt{2} \end{array}$	$egin{aligned} & u_e = c_{artheta_{ m S}} u_1 + s_{artheta_{ m S}} u_2 \ & u_a^{ m (S)} = -s_{artheta_{ m S}} u_1 + c_{artheta_{ m S}} u_2 \ & = c_{artheta_{ m A}} u_\mu - s_{artheta_{ m A}} u_ au \end{aligned}$

ALMOST BIMAXIMAL MIXING (BILARGE)

unfortunately small CP violation: $J \lesssim 4 \times 10^{-3}$ ($J_{\text{max}} = \frac{1}{6\sqrt{3}} = 9.6 \times 10^{-2}$, $J_{\text{max}}^{(\text{quasi-bimax})} \simeq 5 \times 10^{-2}$) $j_{\rho}^{\text{CC}\dagger} = 2 \sum_{\alpha' = e', \mu', \tau'} \overline{\ell_{\alpha' L}} \gamma_{\rho} \nu_{\alpha' L}$ $U = V^{(\ell)} V^{(\nu)} \quad \text{bimaximal } V^{(\nu)} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$ $V^{(\ell)} \simeq U_{\rm CKM} \Rightarrow |U| \simeq \begin{pmatrix} 0.80 & 0.58 & 0.15 \\ 0.35 & 0.66 & 0.66 \end{pmatrix} \Rightarrow \tan^2 \vartheta_{\rm S} \simeq 0.45, \, \sin^2 2\vartheta_{\rm A} \simeq 0.99,$ $j_{\rho}^{\text{CC}\dagger} = 2 \sum_{\alpha,k} \overline{\ell_{\alpha L}} \gamma_{\rho} \left(\sum_{\alpha'} V_{\alpha'\alpha}^{(\ell)} V_{\alpha'k}^{(\nu)} \right) \nu_{kL} = 2 \sum_{\alpha,k} \overline{\ell_{\alpha L}} \gamma_{\rho} U_{\alpha k} \nu_{kL}$ $LMA \Rightarrow 10^{-3} \leq |U_{e3}|^2 \leq 4 \times 10^{-2}$ measurable in JHF-Kamioka bilarge mixing with $\vartheta_{\rm SUN} < \pi/4$, $\vartheta_{\rm ATM} \simeq \pi/4$, $U_{e3} \neq 0$ 0.48 0.48 0.74 $\ell_{\alpha'L} = \sum_{\alpha=e,\mu,\tau} V^{(\ell)}_{\alpha'\alpha} \ell_{\alpha L}$ hierarchical $V^{(\ell)}$ like $U_{\rm CKM}$ $\nu_{\alpha'L} = \sum_{k=1}^{3} V_{\alpha'k}^{(\nu)} \nu_{kL}$

DEPARTURE FROM BIMAXIMAL MIXING: EXAMPLE

[Giunti, Tanimoto, hep-ph/0207096]

002 - 19	C. Giunti, ICHEP 2002, Amsterdam, July 20	
lear matrix element!	: factor 3 theoretical uncertainty on nucl	about
(90% CL) [PRD 65 (2002) 092007]	$ \langle m angle _{ m exp} < 0.33 - 1.35{ m eV}$	EX (^{76}Ge)
CL) [EPJA 12 (2001) 147]	w (⁷⁶ Ge) $ \langle m angle _{ m exp} < 0.35{ m eV}$ (90% C	eidelberg-Moscov
$\eta_{kj} = e^{i lpha_{kj}}$ relative CP parity		
$\alpha_{21}=0,\pi\qquad\alpha_{31}=0,\pi$	$m_1 + U_{e2} ^2 e^{i\alpha_{21}} m_2 + U_{e3} ^2 e^{i\alpha_{31}} m_3 $	$ \langle m \rangle = U_{e1} ^2 \eta$
conserved CP		
, m_2 , m_3 contributions	$\times U_{ek} \Rightarrow$ possible cancellations among m_1 ,	complex
$d \rightarrow \tilde{ v } u$		
$U_{ek} \rightarrow e^{-e}$	$ \langle m \rangle = \left \sum_{k} \nabla_{ek} m k \right $	mass
$m_k \longrightarrow \nu_k$	$ m = \Gamma ^2 m$	effective
$U_{ek} \longrightarrow e^-$	$(A,Z+2)+e^-+e^-$	$\mathcal{N}(A,Z) ightarrow \mathcal{N}($
$d \rightarrow \dots \qquad u$		
$\beta_{\beta_{0\nu}}$ decay	MAJORANA NEUTRINOS? $\iff \beta$	

NEUTRINO OSCILLATIONS
$$\iff \beta \beta_{0\nu}$$
 decay

 $|\langle m \rangle| = \left| |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3 \right|$

ss hierarchy without fine-tuned cancellations among

[Giunti, PRD 61 (2000) 036002]

, m_2 , m_3 contributions

$$\begin{split} |\langle m \rangle| \simeq \max_{k} |\langle m \rangle|_{k} & |\langle m \rangle|_{k} \equiv |U_{ek}|^{2} m_{k} \\ |U_{e2}|^{2} \simeq \sin^{2} \vartheta_{\text{SUN}}, \ m_{2} \simeq \sqrt{\Delta m_{\text{SUN}}^{2}} & |U_{e3}|^{2} \simeq \sin^{2} \vartheta_{\text{CHOOZ}}, \ m_{3} \simeq \sqrt{\Delta m_{\text{ATM}}^{2}} \end{split}$$

$$\begin{array}{ll} \mathsf{LMA} & (99.73\% \ \mathsf{CL}) \\ 0.24 < \tan^2 \vartheta_{\mathrm{SUN}} < 0.89 \\ 2.3 \times 10^{-5} < \Delta m_{\mathrm{SUN}}^2 < 3.7 \times 10^{-4} \end{array} \Rightarrow 9 \times 10^{-4} \lesssim |\langle m \rangle|_2 \lesssim 9 \times 10^{-3} \end{array}$$

[Bahcall, Gonzalez-Garcia, Peña-Garay, hep-ph/0204314]

$$\begin{aligned} |U_{e3}|^2 &\lesssim 4 \times 10^{-2} \\ \Delta m_{\rm ATM}^2 &\simeq 2.5 \times 10^{-3} \end{aligned} \Rightarrow |\langle m \rangle|_3 &\lesssim 2 \times 10^{-3} \end{aligned}$$

 m_2 contribution $|\langle m \rangle|_2$ may be dominant! (lower limit for $|\langle m \rangle|)$

$\mathsf{LSND} \Rightarrow N_{\nu} > 3$

[[]Church, Eitel, Mills, Steidl, PRD66 (2002) 013001]

[Peres, Smirnov, NPB 599 (2001) 3]

2+2 schemes need u_s in SUN or ATM $(\eta_s^{\rm SUN} + \eta_s^{
m ATM} \simeq 1)$

3+1 schemes disfavored by short-baseline ν oscillation experiments [Bilenky, Giunti, Grimus, EPJC 1 (1998) 247] [Bilenky, Giunti, Grimus, Schwetz, PRD 60 (1999) 073007]

FOUR-NEUTRINO MIXING

2+2 FOUR-NEUTRINO SCHEMES

pure $\nu_{\mu} \rightarrow \nu_{s}$ is strongly disfavored in ATM (SK) pure $\nu_{e} \rightarrow \nu_{s}$ is practically excluded in SUN (SNO & SNO+SK) partial $\nu_{e} \rightarrow \nu_{s}$ in SUN and $\nu_{\mu} \rightarrow \nu_{s}$ in ATM is disfavored

 $\eta_S \equiv$ fraction of ν_s in solar osc. G.o.F. = 1.3×10^{-6}

[Maltoni, Schwetz, Tortóla, Valle, hep-ph/0207157]

see also

[Dooling, Giunti, Kim, Kang, PRD 61 (2000) 073011] [Giunti, Gonzalez-Garcia, Peña-Garay, PRD 62 (2000) 013005] [Yasuda, hep-ph/0006319] [Fogli, Lisi, Marrone, PRD 63 (2001) 053008] [Gonzalez-Garcia, Maltoni, Peña-Garay, PRD 64 (2001) 093001] [Bahcall, Gonzalez-Garcia, Peña-Garay, hep-ph/0204194] [Maltoni, Schwetz, Tortóla, Valle, hep-ph/0207227]

3+1 FOUR-NEUTRINO SCHEMES

[Maltoni, Schwetz, Tortóla, Valle, hep-ph/0207157]

see also

[Peres, Smirnov, NPB 599 (2001) 3] [Grimus, Schwetz, EPJC 20 (2001) 1] [Maltoni, Schwetz, Valle, PLB 518 (2001) 252] [Maltoni, Schwetz, Valle, PRD 65 (2002) 093004] [Strumia, PLB 539 (2002) 91]

Neutrino Unbound http://www.to.infn.it/~giunti/NU Carlo Giunti & Marco Laveder	4ν mixing is disfavored SBL experiments disfavor 3+1 schemes SUN+ATM experiments disfavor 2+2 schemes adding more sterile neutrinos (e.g. extra-dim.) does not help! if MiniBooNE will confirm LSND ⇒ real puzzle	3ν mixing (SUN+ATM) \Rightarrow almost bimaximal mixing with $ U_{e3} ^2 \ll 1$ theory: why $ U_{e3} ^2$ is so small? future exp.: measure $ U_{e3} > 0 \Rightarrow$ sign of Δm_{31}^2 and CP violation	SNO and SNO+SK smoking gun evidence of solar flavor transitions all solar ν experiments \Rightarrow LMA $\nu_e \rightarrow \nu_\mu, \nu_\tau$ transitions	CONCLUSIONS