JHF-Kamioka Neutrino Oscillation Experiment using JHF 50 GeV PS

- Introduction
- Facility
- Physics goal
- Summary

Y.Itow ICRR,Univ.of Tokyo Jul27,2002 ICHEP02 Amsterdam

Where we go ?

3 Flavor Mixing

If neutrinos are massive particles, then it is possible that the mass eigenstates and the weak eigenstates are not the same:

MNS (Maki-Nakagawa-Sakata) matrix

3-flavor Oscillation

$$\delta: \mathcal{OP} \text{ in } v_e \text{ appearance}$$

$$A_{CP} = \frac{P(v_\mu \to v_e) - P(\overline{v_\mu} \to \overline{v_e})}{P(v_\mu \to v_e) + P(\overline{v_\mu} \to \overline{v_e})} \approx \frac{\Delta m_{12}^2 L}{4E_v} \bullet \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \bullet \sin \delta$$

Strategy

High statistics by high intensity v beam
Tune Ev at oscillation maximum
Narrow band beam to reduce BG
Sub-GeV v beam for Water Cherenkov

0.75MW JHF 50GeV-PS

Off-Axis *v* beam

Super-Kamiokande

IHF-Kamioka Neutrino Experiment (hep-ex/0106019) Plan to start in 2007 Sendai Kamioka **GeV** v beam **JAERI** Super-K: 22.5 kt Kamiokande JAERI (Tokai) 295km (Tokai) JELUZU **Hyper-K: 1000 kt** KEK Tokyo 🛓 Kanasaki Nagoya 4MW 50 GeV PS Yokohama (conventional v beam) (c) 2000 ESN - 420.0 mi / 675.8 km across JHF 0.75MW + Super-Kamiokande

Future Super-JHF 4MW + Hyper-K ~ JHF+SK × 200

Experiment working group

Dec.1999 : formed (ICRR/KEK/Kyoto/Kobe/Tohoku/TRIUMF)
 Jun.2001 : Letter of Intent (hep-ex/0106019)
 Mar.2002 : Meeting to discuss possibility to organize international collaboration

Facility Construction Group

- > Officially formed in KEK on April, 2001
- The 3rd physics division, IPNS, Cryogenic facility group, Cryogenic Science Center, w/ strong support from KEK-PS beam channel group

JHF-SK Neutrino Working Group

ICRR/Tokyo-KEK-Kobe-Kyoto-Tohoku-TRIUMF

Y. Itow, T. Kajita, K. Kaneyuki, Y.Obayashi, C.Saji, M. Shiozawa, Y. Totsuka (ICRR/Tokyo) Y. Hayato, A.Ichikawa, T. Ishida, T. Ishii, T. Kobayashi, T. Maruyama, K. Nakamura, Y. Oyama, M. Sakuda (KEK) S. Aoki, T.Hara, A. Suzuki (Kobe) T. Nakaya, K. Nishikawa (Kyoto) T. Hasegawa, K. Ishihara (Tohoku) A.Konaka (TRIUMF, CANADA)

In addition to the above user group, the neutrino facility construction group is OFFICIALLY formed at KEK.

Off Axis Beam

(ref.: BNL-E889 Proposal)

Quasi Monochromatic Beam
x2~3 intense than NBB

Statistics at SK (OAB2deg,1yr,22.5kt) ~4500 ν_{μ} tot ~3000 ν_{μ} CC ν_{e} ~0.2% at ν_{μ} peak

Ev reconstruction in water Cherenkov

Detectors

■ Muon monitors @ ~140m

Spill-by-spill monitoring of beam direction

First Front detector @280m
Neutrino intensity/direction
Second Front Detector @~2km
Almost same E_v spectrum as for SK
Water Cherenkov can work
Far detector @ 295km
Super-Kamiokande (50kt)

Neutrino spectra at diff. dist

dominant syst. in K2K

Far detector Super-Kamiokande

(since Apr 1 9 9 6)

50,000 ton water Cherenkov detector (22.5 kton fiducial volume) ZINT \triangleleft - \forall 4 0 m

Re-Construction of Super-K (Jul 2002)

Physics Goal

Measurement of \sin^2 2~ heta 23 , Δm^2 23

 $\frac{\delta(\sin^2 2\theta)}{\delta(\Delta m^2)} \sim 0.01$

ve appearance in JHF-Kamioka

Back ground for v_e appearance search

- Intrinsic v_e component in initial beam
- Merged π^0 ring from ν_{μ} interactions

10% uncertainty for BG estimation

The 1kt π^0 data will be studied for exercise

$\sin^2 2\theta_{13}$	Background in Super-K (as of Oct 25, 2001)					Signal	Signal +
	v_{μ}	ν _e	\bar{v}_{μ}	\overline{v}_{e}	total	Signal	BG
0.1	12.0	10.7	1.7	0.5	24.9	114.6	139.5
0.01	12.0	10.7	1.7	0.5	24.9	11.5	36.4

<u>Future upgrade</u> Super-JHF(4MW)+Hyper-K(1Mt)

Global Schedule

Summary

- Precision study of neutrino mixing matrix
 Next step after the discovery
 We may find a hint for next break-through
- JHF-Kamioka neutrino experiment (2007~)
 JHF 0.75MW 50GeV-PS+Off Axis beam+Super-K
 Narrow band beam at oscillation maximum (~ 1GeV)
 ν_e appearance, discovery of θ₁₃ (sin θ₁₃>0.006,90%CL)
 Budget request submitted, R&D started

Possible upgrade in future
4MW Super-JHF + Hyper-K (1Mt water Cherenkov)
CP violation in lepton sector
Bonus ! (Proton Decay !)