The MINOS Experiment & Long Baseline v Oscillation Programs in Europe and U.S.

> Jon Urheim, U. of Minnesota ICHEP 2002, Amsterdam, 27 July 2002

Introduction MINOS Experiment Overview Status of MINOS – Construction & First Data Status of CNGS – [thanks to S. Katsanevas] Near-Future Initiatives in Europe and US

The MINOS Experiment & Long Baseline v Oscillation Programs in Europe and U.S.

Jon Urheim, U. of Minnesota ICHEP 2002, Amsterdam, 27 July 2002

- Introduction
- MINOS Experiment Overview
- Status of MINOS Construction & First Data
- Status of CNGS [thanks to S. Katsanevas]
- Near-Future Initiatives in Europe and US

picture emerging from existing data

- Large effect at "atmospheric" Δm^2

- oscillation hypothesis very strong [Super к]
- effect now seen at accelerator expt. [к2к]
- dominant mode likely to be $v_{\mu} \rightarrow v_{\tau}$ [Super K]
- Also large effect at "solar" ∆m²
 - could be the LMA solution !! [Ga + sno + sк]

– Questions:

- two angles large, what about the third θ_{13} ?
- complex phase in MNS matrix → CPV ?
- what about CPT ? sterile neutrinos ? Extra dimensions ? where does LSND fit ?

[Davis]

Goals of 1st generation of Long Baseline Experiments

Confront emerging picture with precision data

- confirm deficit of v_{μ} in accelerator-based exp't
- confirm oscillation hypothesis:

must measure/know **E & L** precisely to see osc'ns in L/E pin down oscillation parameters

• demonstrate $\nu_{\mu} \rightarrow \nu_{\tau}$ is dominant mode:

Tau appearance ! (CNGS \rightarrow direct, MINOS \rightarrow NC/CC)

Look for new phenomena

- evidence for non-zero θ_{13} : \rightarrow detection of v_e
- test for possible CPT violation ?
- etc....

The MINOS Collaboration

 IHEP-Beijing • College de France • Athens • Dubna • ITEP-Moscow • Lebedev • Protvino
 • Cambridge • Oxford • Rutherford • Sussex • University College London • Argonne • Brookhaven • Caltech • Illinois Inst of Tech • Fermilab • James Madison • Harvard • Indiana • Livermore • Minnesota-Twin Cities • Minnesota-Duluth • Northwestern • Pittsburgh • South Carolina • Stanford • Texas-Austin • Texas A&M • Tufts • Western Washington • Wisconsin

~30 Institutions ~250 physicists & engineers

J. Urheim, Status of MINOS

ICHEP 2002, Amsterdam

NuMI / MINOS Concept

Fermilab

 v_{μ} source: (NuMI) 120 GeV protons from FNAL Main Injector detectors: (MINOS)

730 km

10 km

1) 'Far' detector:

5.4 kT magnetized iron/scintillator tracker/calorimeter in Soudan mine

3) Also:

'Calibration' detector in test beams at CERN

2) 'Near' detector:

980 T version of far detector at FNAL

Soudan

NuMI & The Main Injector

Fermilab Main Injector:

120 GeV protons 4 x 10¹³ protons/pulse 1.9 sec rep rate (~8 μsec spill) → 0.4 MW

NuMI Beam:

Graphite target Two magnetic horns 675 m. vac. decay pipe hadron absorber

Beam Monitoring:

muon detectors hadron detectors + Near Detector !

SFERMILAB #98-765D

Soudan Underground Laboratory

MINOS

former iron mine, now a state park,
 home of: Soudan-1 & 2, CDMS-II, and MINOS expts

J. Urheim, Status of MINOS

ICHEP 2002, Amsterdam

27 July 2002

The MINOS Far Detector

Steel / Scintillator :

2.5 cm thick steel
4 cm x 1 cm polystyrene

– encased in Al cover

15,000 Amp-turn coil

486 Layers \rightarrow 5.4 kTon !

Readout:

WLS fibers glued into groove in scintillator – double-ended readout

Hamamatsu M16 pmt's – 8-fold optical summing

IDE 'VA' front-end chips pulseheight & time

GPS to synch to MI spill

Shown here: 1 (of 2) super modules - 248 planes: 8m x 8m x 15m !

J. Urheim, Status of MINOS

Far Detector Module Layout

Scintillator Detectors & PMTs

MINOS

4.1 cm x 1 cm polystyrene strips – coextruded with TiO₂ coating & groove for WLS fiber

The MINOS Near Detector

Simulated Neutrino Interaction

MINOS

Beam Energy Considerations

Pre – Super K: From: Battistoni & Lipari, hep-ph / 9807475 $\Delta m^2 \sim 0.01 \text{ eV}^2$ (IMB,Kam..) 1.0 $P(\nu_{\mu} \rightarrow \nu_{\mu})$ → NuMI 'high energy beam' gives best sensitivity 0.5 $\Delta m^2 = 3 * 10^{-3} eV^2$ \rightarrow good prospects for 0.0 observation of v_{τ} a: CERN → CS Fermilab -> MINOS 10³ c: KEK → ØK **Post – Super K:** $dN/d\log[L/E_{\nu}]$ (kton yr)⁻¹ d: Atmospheric ν $\Delta m^2 \sim 0.001 - 0.004 \text{ eV}^2$ NuMI **HE Beam** 10² Can't increase "L" \rightarrow High energy beam no longer desirable ! 101 → But NuMI beam was designed to be tunable ! 102 103 100 10¹ L/E_{ν} (km/GeV)

104

Configurable 2-Horn Design

MINOS

– Low energy beam: less flux, but better match to Δm^2

- Still plenty of events: ~ 5000 v_{μ} CC events in 2 yrs

What we might see in 2 yrs of running

J. Urheim, Status of MINOS

ICHEP 2002, Amsterdam

27 July 2002

MINOS sensitivity to Oscillations

Status of Far Detector Construction

Status of Detector & Beam Construction (cont'd)

- Far Detector Supermodule 1 completed, 24 June
 - 248 planes, (~7 planes per week since Aug, '01)
 - Coil now installed, to be energized this week !
 - Supermodule 2 already being assembled \rightarrow finish in April '03
- Near Det. Plane Assembly ongoing at FNAL
 - Being done on surface while expt'l hall is outfitted
 - Excellent progress so far
- Excavation of Beam Line & Near Det. Hall is done
 - Installation of 2-m diameter, 675-m long decay pipe under way
 - Prototype horn 1 tested, production horns being fabricated
 - Design of target pile nearly complete

– NuMI Beam commissioning in late 2004 !!

NuMI Construction

J. Urheim, Status of MINOS

ICHEP 2002, Amsterdam

27 July 2002

First Look at Far Detector Data

Detector commissioned as construction proceeds:

cosmic ray / atm neutrino data taken mainly nights & weekends

- → exposure measured in kton-months so far !
- → but will run SM 1 ~full-time during construction of SM 2
- First attempts to calibrate !

note: 192 strips/plane X 248 planes X 2 ends/strip = ~95,000 strip-ends in SM 1

pulse height (min-l) & timing

Calibration Detector at CERN: relates hadron/em shower energy to min-l depos'n.

J. Urheim, Status of MINOS

ADC value

Pulseheight Calibration

ICHEP 2002, Amsterdam

First upward-going muon !

(Downward-going) Candidate: Partially Contained v_{μ} Event ?

ICHEP 2002, Amsterdam

Summary of MINOS

Data-taking w/ NuMI beam will begin in late 2004

- Far & Near detector on schedule, Far det. already ½ complete (detector very stable: < 1 ns timing drifts, ~ 1% pulseheight drifts)
- Calibration detector running & data analysis will be complete
- much progress on NuMI: civil & technical components
- By 2007, will have precise measurements:
 - osc'n parameters: $\nu_{\mu} \rightarrow \nu_{\tau}$ case; (NC/CC ratio for mode id)
 - search for subdominant $\nu_{\mu} \rightarrow \nu_{e}$
- Will also have ~ 24 kiloton-year exposure to atm. v's
 - energy, direction resol'n \rightarrow Minos competitive on $\nu_{\mu} \rightarrow \nu_{\tau}$
 - 1st direct search for CPT non-cons. $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \text{ vs } \nu_{\mu} \rightarrow \nu_{\mu})$

- 'conventional' neutrino physics w/ near detector

\msterdam

200 ____

0,5

1

1,5

2

2,5

2,5

3

3,5

Km

Annual Report 1999

- Targeting direct observation of $\nu_{\mu} \rightarrow \nu_{\tau}$
- High energy beam from 400 GeV CERN SPS
 - needed to produce tau's
- Fine-grained detectors: OPERA & ICARUS
 - needed to identify tau decays !
- Excellent capabilities for electron detection
 - can do well on $\nu_{\mu} \rightarrow \nu_{e}$ search
 - high energy beam a handicap here, unless Δm^2 is large
- CNGS civil construction far along !!
 - current projection to deliver neutrinos in 2006 (?)
 - [exact date may depend on CERN schedule for SPS running]

The CNGS Neutrino Beam

The OPERA Experiment

COLLABORATION

BelgiumChinaIIHE(ULB-VUB) BrusselsIHEP Beijing, Shandong

Croatia Zagreb

France

LAPP Annecy, IPNL Lyon, LAL Orsay, IRES Strasbourg

Germany

Berlin, Hagen, Hamburg, Münster, Rostock

Israel Technion Haifa

Italy Bari, Bologna, LNF Frascati, L'Aquila, Naples, Padova, Rome, Salerno

Japan Aichi, Toho, Kobe, Nagoya, Utsunomiya Switzerland Bern, Neuchâtel

Russia INR Moscow, ITEP Moscow, JINR Dubna, Obninsk

> 34 groups ~ 170 physicists

Turkey METU Ankara

OPERA = CNGS1 Approved

27 July 2002

Electronic detectors to select bricks with v interactions (plastic scintillator strips)

OPERA Experiment Sensitivity

- Sensitivity to many decay modes of tau lepton
- Expect to take data for 5 yrs \rightarrow 9 kTon-yrs.
- Low Backgrounds (0.75 events)

- Expected event yields:
 - $\Delta m^2 = 1.2 \times 10^{-3} \text{ eV}^2$: 2.7 events
 - $\Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2$: 11 events
 - $\Delta m^2 = 5.4 \times 10^{-3} \text{ eV}^2$: 54 events

The ICARUS Collaboration

F. Arneodo, B. Babussinov, B. Badelek, A. Badertscher, M. Baldo-Ceolin, G. Battistoni, B. Bekman, P. Benetti,
E. Bernardini, A. Borio di Tigliole, M. Bischofberger, R. Brunetti, A. Bueno, E. Calligarich, D. Cavalli, F. Cavanna, P. Cennini, S. Centro, A. Cesana, C. Chen, Y. Chen, D. Cline, P. Crivelli, A. Dabrowska, M. Daszkiewicz,
C. De Vecchi R. Dolfini, M. Felcini, A. Ferrari F. Ferri, A. Gigli Berzolari, I. Gil-Botella, K. Graczyk, L. Grandi, K. He, J. Holeczek, X. Huang, C. Juszczak, D. Kielczewska, J. Kisiel, L. Knecht, T. Kozlowski, H. Kuna-Ciskal, M. Laffranchi, J. Lagoda, Z. Li, B. Lisowski, F. Lu, J. Ma, M. Markiewicz, F. Mauri, C. Matthey, G. Meng, C. Montanari, S. Muraro, G. Natterer, S. Navas-Concha, G. Nurzia, S. Otwinowski, O. Palamara D. Pascoli, L. Periale, G. Piano Mortari, A. Piazzoli, P. Picchi, F. Pietropaolo, W. Polchlopek, T. Rancati, A. Rappoldi,
G.L. Raselli, J. Rico, E. Rondio, M. Rossella, A. Rubbia, C. Rubbia, P. Sala, D. Scannicchio, E. Segreto, Y. Seo, F. Sergiampietri, J. Sobczyk J. Stepaniak, M. Stodulski, M. Szarska, M. Szeptycka, M. Terrani, S. Ventura,
C. Vignoli, H. Wang, M. Wojcik, G. Xu, X. Yang, A. Zalewska, J. Zalipska, C. Zhang, Q. Zhang, S. Zhen, W. Zipper.

University and INFN of: L'Aquila, LNF, LNGS, Milano, Padova, Pavia, Pisa - Italy	
ETH Hönggerberg, Zürich - Switzerland	IHEP, Academia Sinica, Beijeing - China
CNR Istitute of cosmogeophysics, Torino - Italy	Politecnico di Milano - Italy
University of Silesia, Katowice - Poland	University of Mining and Metallurgy, Krakow - Poland
H.Niewodniczanski Inst. of Nucl. Phys., Krakow - Poland	Jagellonian University, Krakow - Poland
Cracow University of Technology, Krakow - Poland	A.Soltan Inst. for Nucl. Studies, Warszawa - Poland
Warsaw University, Warszawa - Poland	Wroclaw University, Wroclaw - Poland
UCLA, Los Angeles - USA	

This is an "open" collaboration: new teams welcome !

The Icarus Detector

Large Volume, liquid Argon TPC

total mass ~ 3 kTon

recently approved for installation in LNGS Hall B:

expected date: 2005

Currently 600 Ton prototype being installed at LNGS

Results from 300 Ton module

J. Urheim, Status of MINOS

ICHEP 2002, Amsterdam

27 July 2002

Expected sensitivity to θ_{13}

Long Baseline Experiments: The Next Generation

- Geared toward observation of $\nu_{\mu} \rightarrow \nu_{e}$ at Δm_{atm}^{2}
- Off-Axis (2⁰) CNGS beam to off-shore detector
 - Under-water C detector 1200 km from CERN in G. of Taranto
 - Low energy beam config. @ 0.8 GeV (2nd osc. max.)
 - EOI: http://home.cern.ch/dydak/oscexp.ps
- Off-Axis (0.5-1⁰) NuMI beam to surface detector
 - sites in Minnesota (~700+ km) & Canada (~900 km) possible
 - 20 kTon detector, possibly H₂0, possibly RPC, possibly scint.
 - Sensitivity to θ_{13} at 1.5 x 10⁻³ level
 - LOI (Fermilab P929):

http://www-numi.fnal.gov/fnal_minos/new_initiatives/

• Note: 1-Day meeting at UC London, Monday September 16

Long Baseline Experiments: More Ideas for future

- BNL beams to NUSL, Upstate NY, Soudan...
 - Upgrades to AGS: 0.5 1.3 MW
 - Letter of Intent: hep-ex/0205040
- CERN beam to Frejus
 - New low-energy proton synchrotron (2 GeV) re-using LEP RF
 - 300 MeV neutrino energy, H₂0 detector
- "Beta-Beam" to Frejus
 - ν_{e} and $\overline{\nu}_{e}$ from accelerated $~^{18}\text{Ne}$ and ^{6}He ions
 - 300 MeV neutrino energy, H₂0 detector
- Krasnoyarsk reactor experiment v_e disappearance
 - Improve on Chooz sensitivity by factor of ~8
- Haven't mentioned FNAL proton driver, or ν factories

Exciting time for Long Baseline experiments

- MINOS construction far along— first look at cosmics
- Significant progress in CNGS program
- Interesting ideas for next generation:
 - NuMI off-axis, CNGS off-axis, BNL beams, beta beams...

– Far future will depend on what current and next generation exp'ts turn up!

- If θ_{13} is not so small, possibility of seeing CP violation will be too good to pass up.
- This will require a significant international project

Backup Slides

Near Detector Assembly

ICHEP 2002, Amsterdam

27 July 2002

Calibration Detector

