

Direct Dark Matter Detection CDMS, ZEPLIN, DRIFT (Edelweiss)

ICHEP 31 Amsterdam July 26, 2002 Harry Nelson Santa Barbara

Physics Motivation

- Several Arguments for Dark Matter
- Milky Way's Rotation Curve

- Massive Particle Popular
- Weak Interactions (WIMP):
 » Dark/Luminous Balance
 » SUSY Broken at Weak
 Scale... χ⁰ (neutralino)

July 26, 2002

WIMP/nucleon $\sigma \approx 10^{-42}$ cm

The Experiments

CDMS - Ge/Si, measure ionization (Q) and heat/phonons (P) Recoil/γ discrimination: Q/P 2 Detector Types, 2 sites! Updated Result

Edelweiss!

ZEPLIN 1 - Liq Xe, measure scintillation Recoil/γ discrimination: Pulse Shape in Time 2 more ZEPLIN's - add ionization New Result

DRIFT - CS_2 , measure ionization (Q) Recoil/ γ discrimination: Spatial Distribution of Q Directionality

CDMS II

UCSB CDMS Sites Stanford Site:

- 16 mwe
- Substantial neutron flux
- Results

Soudan Site:

- 2000 mwe
- Neutron flux down 1/300
- Commissioning fridge
- Operation this winter

July 26, 2002

CDMS II

CDMS Detectors BLIPs'

- 1/6 kg disks
- One Side Ioniz. (Q)
- Thermistor Phonons (P)
 - slow

`ZIPs'

- P ahtermal photons
- 'TES' Trans. Edge Sens
- Fast Signal: x, y, z
- Performance at Stanford

July 26, 2002

UCSB Updated Limits

July 26, 2002

ICHEP 31 - Harry Nelson

CDMS II

CDMS Status

UCSB

- At Shallow Site (16 mwe): \Rightarrow Neutron Shielding Added (reduce 1/2) \Rightarrow Detector Technology Completely Changed \rightarrow 'ZIP'... detect athermal phonons \rightarrow Pulse faster - microseconds \rightarrow Pulse Risetime - rejection of external electrons \Rightarrow 27 kg-d accumulated, more being gathered \Rightarrow Data Terrific
 - \Rightarrow Results Later This Year
- Move to Soudan (2100 mwe) ASAP

ZIP Detection Mechanism

- Recoil THz phonons
- Phonons go to surface SC Alfins, break Cooper pairs, giving quasiparticles.
- and create quasiparticles
- Quasiparticles diffuse in ~ µs to W transition-edge sensors (TES)
- where they release their
- energy to the W electrons
- Release energy, T is raised, R is raised
- Current change is measured with SQUIDs

ICHEP 31 - Harry Nelson

UCSB

CDMS II

Recent ZIP Data

With Activity in Veto

July 26, 2002

ICHEP 31 - Harry Nelson

<u>ZEPLIN</u>

July 26, 2002

 \Rightarrow non - PMT

Active Shield

July 26, 2002

Counts

Calibration

Boulby Mine

ZEPLIN I Nov 2001

\approx 1/5 of energy from nuclear recoil appears as scintillation

July 26, 2002

ICHEP 31 - Harry Nelson

CDMS II

July 26, 2002

ICHEP 31 - Harry Nelson

July 26, 2002

Zeplin II (30 kg)

Zeplin III (6 kg)

Long Term Goal is 1000 kg....

July 26, 2002

CDMS II

Discrimination by Imaging Nuclear Recoils

40 keV Ar recoils 500 electron-ion pairs

UCSB

15 keV α s 500 electron-ion pairs

EGS4/Presta - 13 keV e - in 40 Torr Ar

... Maybe even the direction of the recoil can be reconstructed

July 26, 2002

UCSB

CDMS II

Diurnal Variation (if WIMP `wind')

TPC operating now

Calibration

Competitive sensitivity after a few months of running

July 26, 2002

<u>Summary</u>

UCSB

- Lots of recent progress
 - \Rightarrow Edelweiss
 - \Rightarrow Zeplin-1
 - \Rightarrow CDMS in a few months
 - \Rightarrow DRIFT on line
- Everyone has expansion plans to keep gain orders of magnitude both in near and long term future
- 2010... let's hope we have an LSP WIMP and are doing astrophysics with it and studying it in LHC decays!

Acknowledgements

- CDMS collaboration, particularly Tarek Saab, Richard Schnee, Rick Gaitskell, Chris Savage, Ron Ferril
- Zeplin Nigel Smith, Neil Spooner
- DRIFT Dan Snowden-Ifft, Jeff Martoff

UCSB