Positron Fraction from Dark Matter Annihilation in the CMSSM

Wim de Boer, Markus Horn, Christian Sander

IEKP, University Karlsruhe

Wim.de.Boer@cern.ch http://home.cern.ch/~deboerw

ICHEP, Amsterdam, July, 2002

<u>Outline</u>

CMSSM Constraints

Positron fraction in the CMSSM Parameter Space

Comparison with HEAT and AMS data

Summary

Typical Fits to AMS+HEAT Data vs $\tan \beta$

CMSSM Fitprocedure

Choose the 10 GUT supergravity inspired parameters: $m_0, m_{1/2}, \alpha_{GUT}, M_{GUT} \ \mu, \tan\beta, A(0), Y_t(0), Y_b(0), Y_{\tau}(0)$ Minimize the Higgs potential in order to determine M_Z

Calculate masses and couplings at low energies by integrating about 30 coupled RGE's and decoupling sparticles at thresholds

calculate $Br(b \rightarrow s\gamma)$, a^{SUSY}_{μ}

Determine the best parameters by minimizing $\chi^2.$

 $+\chi^2(global~EW~precision~data~from~MSSM)$

 m_0 and $m_{1/2}$ strongly correlated. Repeat fits for all pairs of $m_0,\ m_{1/2}, aneta$

Unification of the Coupling Constants in the SM and the minimal MSSM $1/\alpha_{i}$ $1/\alpha_{i}$ 60 60 $1/\alpha_1$ $/\alpha_1$ SM **MSSM** 50 50 40 40 $1/\alpha_2$ $1/\alpha_2$ 30 30 20 20 10 10 $1/\alpha_3$ $1/\alpha_{3}$ 0 0 $\frac{15}{10}\log Q$ $\frac{15}{10}\log Q$ 5 10 5 10

U. Amaldi, W. de Boer, H. Fürstenau, PL B260(1991) $\alpha_1, \alpha_2, \alpha_3$ coupling constants of electromagnetic –, weak–, and strong interactions $1/\alpha_i \propto \log Q^2$ due to radiative corrections (LO)

CMSSM Sparticle Spectrum

Allowed Parameter Regions for $\tan\beta = 35$

Constraints:Gauge Unification and EWSB A_0 free! Fit prefers $A_0 > 0$ from $b \to s\gamma$ and $\mu > 0$ from $a_\mu \to$ strong constraint from $M_h > 114 \ GeV$ (much less for $A_0 < 0$!!)

Main Diagrams for Neutralino Annihilation

Only heavy final states relevant neutralinos are Majorana particles and fermions \rightarrow Pauli-Principle at zero momentum \rightarrow p-wave $\rightarrow \propto$ fermion mass !) All x-sections strong function of tan β Interferences (Z-,t-channel) NEGATIVE Interferences (Higgs-,t-channel) POSITIVE

p-wave suppression at low momentum for light final states

s,t-channel Interferences

Higgs large, Z small for $b\overline{b}$ final state

Higgs small, Z large for $t\overline{t}$ final state

Pseudoscalar Higgs exchange vs an eta

Comparison of X-sections in CalcHEP and darkSUSY

$$\left\langle \sigma v \right\rangle \left[\frac{\mathsf{cm}^3}{\mathsf{s}} \right]$$

 $\tan\beta=35, m_A=870~{\rm GeV}, A_t=-1180, A_b=-1610~{\rm GeV}$

$$m_0 = 500~{
m GeV}, m_{1/2} = 500~{
m GeV}$$

	CalcHEP	darkSUSY
bb	$8.1 \cdot 10^{-28}$	$8.2 \cdot 10^{-28}$
$tar{t}$	$0.8 \cdot 10^{-28}$	$1.6 \cdot 10^{-28}$
$ au^+ au^-$	$3.8 \cdot 10^{-29}$	$4.8 \cdot 10^{-29}$
W^+W^-	$2.1 \cdot 10^{-30}$	$2.1 \cdot 10^{-30}$

Feynarts agrees with CalcHEP concerning $t\bar{t}!$

Dark Matter $\Omega h^2 = 0.3 \pm 0.2$ (from DarkSusy)

 $\tan\beta = 1.6$

 $\tan\beta = 35$

Wim de Boer

Typical Fits to AMS+HEAT Data vs $\tan \beta$

Wim de Boer

Possible AMS-02 Data in 2006

Summary

Low values of ($\tan eta < 4.3$) excluded by LEP Higgs Limit of 114 GeV

At larger values of $aneta\,b\overline{b}$ DOMINANT FINAL STATE

bb FINAL STATE has orders of magnitude larger x-section than W^+W^- final states and also larger than $t\overline{t}$ final states for $\tan\beta>5$

 $b\overline{b}$ FINAL STATE fits the AMS+HEAT data as well as the W^+W^- final states

Supersymmetry is an excellent candidate to explain the cold Dark Matter in the universe. Its signal could be the positrons and antiprotons from neutralino annihilation into $b\overline{b}$ final states