Out of the Quark-Gluon Quagmire Emerge Hard Signals

> John Harris Yale University

Introduction

Relativistic Heavy Ion Physics Relativistic Heavy Ion Collider (RHIC) + RHIC Experiments

- General Characteristics of RHIC Collisions
- Soft Physics "Brief Overview"
- High P_T Physics "Hard Results"
- Summary and Outlook

John Harris (Yale University)

"In high-energy physics we have concentrated on experiments in which we distribute a higher and higher amount of energy into a region with smaller and smaller dimensions."

"In order to study the question of 'vacuum', we must turn to a different direction; we should investigate some 'bulk' phenomena by distributing high energy over a relatively large volume."

T.D. Lee Rev. Mod. Phys. 47 (1975) 267.

John Harris (Yale University)

Lattice QCD Calculations

John Harris (Yale University)

Purpose of Relativistic Heavy Ion Physics

- Investigate High Density QCD Matter in Laboratory
 - Determine its properties
- Phase Transitions?
 - Deconfinement to Quark-Gluon Plasma
 - Chiral symmetry restoration
- "Applications"?
 - Quark-hadron phase transition in early Universe
 - Cores of dense stars
 - High density QCD

John Harris (Yale University)

Collisions at RHIC

John Harris (Yale University)

Relativistic Heavy Ion Collider

John Harris (Yale University)

ICHEP 2002, Amsterdam

The Two "Large" Experiments at RHIC

STAR

Solenoidal field Large-Ω Tracking TPC's, Si-Vertex Tracking RICH, EM Cal, TOF

PHENIX

Axial Field High Resolution & Rates 2 Central Arms, 2 Forward Arms TEC, RICH, EM Cal, Si, TOF, μ-ID

- Hadronic Observables
- Large Acceptance, Jets
- Event-by-Event Analyses

John Harris (Yale University)

Leptons, Photons, & Hadrons
Simultaneous Detection of Various Transition Phenomena

Relativistic Heavy Ion Collider

John Harris (Yale University)

The Two "Smaller" Experiments at RHIC

PHOBOS

BRAHMS

"Table-top" Spectrometer

2 Spectrometers

Charged Hadrons Particle Correlations

Inclusive Particle Production
Large Rapidity Range

John Harris (Yale University)

<u>Relativistic Heavy Ion Collider</u>

lons: A = 1 ~ 200, pp, pA, AA, AB

Design Performance	<u>Au + Au</u>	<u>p + p</u>
Max √s _{nn}	200 GeV	500 GeV
L [cm ⁻² s ⁻¹]	2 x 10 ²⁶	1.4 x 10 ³¹
Interaction rates	1.4 x 10 ³ s ⁻¹	3 x 10 ⁵ s ⁻¹

John Harris (Yale University)

RHIC Running

Collisions at RHIC

Centrality → impact parameter (b) selection on collision geometry

<u>participants</u>: nucleons in nuclear overlap

John Harris (Yale University)

<u>Au on Au Event at CM Energy ~ 130 A-GeV</u>

Peripheral Event

 $color code \Rightarrow energy loss$

<u>Au on Au Event at CM Energy ~ 130 A-GeV</u>

$color code \Rightarrow energy loss$

Mid-central Event

Au on Au Event at CM Energy ~ 130 A-GeV

Central Event

General Characteristics of RHIC Collisions

John Harris (Yale University)

General Characteristics of RHIC Collisions

John Harris (Yale University)

<u>Soft Physics – Brief Overview</u>

from the > (28 + 11) refereed journal publications from RHIC experiments: Large Particle Multiplicities $\rightarrow dn_{ch}/d\eta \mid_{v=0}$ = 670, N_{total} ~ 6000 Large energy densities (dE_T/dη) $\rightarrow \epsilon \geq 5$ GeV/fm³ / τ ($\tau \sim 0.1 - 1$) Low net baryon density (B/B ratios) $\rightarrow \mu_B \sim 40 \text{ MeV}$ Chemical Freezeout T (particle ratios) \rightarrow T ~ 170 MeV Hadronization (dn_{ch}/dη $|_{v=0}$, particle ratios) \rightarrow AA ~ e⁺e⁻ saturation, statistical hadronization, fragmentation (universality)? **Expansion and Thermal Freezeout** quark coalescence (B/B ratios) no long-lived mixed phase (Bose-Einstein correlations) rather - freezeout at critical point or rapid hadronization short chemical-to-thermal freeze-out interval (particle spectra, resonances and particle yields, multi-strange baryons spectra, HBT correlations) Space-time evolution of interaction still being determined

John Harris (Yale University)

Hard Scattering as a Probe at RHIC

- New for heavy ion physics → <u>Hard Parton Scattering</u>
 - $\sqrt{s_{NN}} = 200 \text{ GeV}$ at RHIC (vs 17 GeV at SPS)
- Jets and mini-jets
 - \rightarrow 30 50 % of particle production
 - → high p_t leading particles (jets?)
 → azimuthal correlations

leading particle

medium

ICHEP 2002, Amsterdam

- Scattered partons propagate through matter radiate energy (~ few GeV/fm) in colored medium
 - suppression of high p_t particles called "parton energy loss" or "jet quenching"
 - alter di-jets and azimuthal correlations

John Harris (Yale University)

<u>Comparison of Pb+Pb to p+p at vs = 17.2 GeV</u>

Nuclear Modification Factor R_{AA}

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{T_{AA} d^2 \sigma^{NN} / dp_T d\eta}$$

TAA: nuclear overlap integral (from Glauber model)

→ If any parton energy loss,
 it is overwhelmed by initial
 state soft multiple scattering
 (Cronin effect)

John Harris (Yale University)

Inclusive Hadron p_t-distributions

<u>High-p_T Spectra in 130 GeV Au+Au Collisions</u>

spectra from PHENIX + STAR agree over 6 orders of magnitude

John Harris (Yale University)

Suppression of Hadron Production

John Harris (Yale University)

Centrality Dependence of Suppression

John Harris (Yale University)

Inclusive Hadron p_f-spectra: 1/s = 200 GeV AuAu

Central/Peripheral Comparisons

John Harris (Yale University)

Comparison with N+N Reference Data

Suppression increases with centrality

more pronounced at higher p_T

Azimuthal Correlations in AA Collisions

<u>Long-range correlations</u> momentum conservation, az. anisotropy of event (soft)

John Harris (Yale University)

A Probe of Early Dynamics

XZ-plane - the reaction plane

v₂: 2nd Fourier harmonic coefficient of azimuthal distribution of particles with respect to the reaction plane \rightarrow measures elliptic flow

John Harris (Yale University)

Hydrodynamic Calculation of Elliptic Flow

P. Kolb, J. Sollfrank, and U. Heinz

John Harris (Yale University)

Charged Particle Elliptic Flow (v₂)

data \rightarrow compatible with scenario of large parton energy loss in medium

John Harris (Yale University)

Can we see jets in high energy Au+Au?

John Harris (Yale University)

PHENIX Hard Scattering via Angular Correlations

- Charged tracks (1 2 GeV/c) associated with a
 - high energy leading photon (>2.5 GeV/c)
- Remove soft background by subtraction of mixed event distribution.
- Fit remainder:
 - particle correlation in $\Delta \varphi$
 - shape taken from Pythia
 - add v₂ component to account for flow effects

John Harris (Yale University)

STAR Technique:

Two-Particle Azimuthal Correlations

 $C_{2}(\Delta \Phi) = \frac{1}{N_{trigger}} \frac{1}{efficiency} \int d(\Delta \eta) N(\Delta \Phi, \Delta \eta)$

Azimuthal correlation function Trigger particle $p_T > 4$ GeV/c Associate tracks $2 < p_T < p_T(trigger)$

short range η correlation:
 jets + elliptic flow
long range η correlation:
 elliptic flow

ICHEP 2002, Amsterdam

John Harris (Yale University)

Relative Charge Dependence

Compare ++ and - correlations to +-

System	(+-)/(++ &)
p+p	2.7+-0.6
0-10% Au+Au	2.4+-0.6
Jetset	2.6+-0.7

Strong dynamical charge correlations in jet fragmentation → "charge ordering"

p_T > 4 GeV/c particle production mechanism same in central Au+Au & pp

John Harris (Yale University)

Using p+p to Study Au+Au Jet Correlations

<u>Assume</u>:

high p_T triggered Au+Au event is a superposition: high p_T triggered p+p event + elliptic flow of AuAu event

- v₂ from reaction plane analysis
- *A* from fit in non-jet
 region (0.75 < |∆φ| < 2.24)

$C_2(Au + Au) = C_2(p + p) + A^*(1 + 2v_2^2 \cos(2\Delta\phi))$

disappears

Matter²⁰⁰²

John Harris (Yale University)

<u> Summary – "High" Pt</u>

John Harris (Yale University)

<u>Summary – "High" Pt</u>

After first 2 RHIC Runs -

Picture emerging: rapid formation of dense medium high Pt hadrons suppressed jets quenched emission from surface?

Need theory input on: space-time evolution (dynamic models) energy loss estimate: dE/dx ~ 10-15 times cold matter quarks on lattice medium effects fragmentation function (baryons and mesons at high z)

John Harris (Yale University)

<u>Outlook – "High" Pt</u>

Still ahead: Charmonium (cc suppression/enhancement) Higher Pt triggers, EMC, jets? pA, dA for nuclear effects (hard scattering, gluon structure function) **Open Charm (charm production rates)** Polarized pp measurements up to \sqrt{s} = 500 GeV (gluon and sea-quark contribution to proton spin) **Understand gluon saturation (link between RHIC & HERA!) Direct Photon Radiation?** Answers to questions on "new phenomena"......

John Harris (Yale University)

<u>Thanks</u>

STAR, PHENIX, BRAHMS, PHOBOS Collaborations RHIC Operations Group

for contributions and/or discussions: A. Drees **D. Hardtke** J. Klay **M.** Miller **J. Nagle T. Peitzmann R. Snellings** P. Steinberg **T. Ullrich** W. Zajc

And all others I forgot to mention

John Harris (Yale University)

Using p+p to Study Au+Au Jet Correlations

- high p_T triggered Au+Au event
 - superposition of high p_T triggered p+p event + elliptic flow of AuAu event

$$C_2(Au + Au) = C_2(p + p) + A^*(1 + 2v_2^2 \cos(2\Delta\phi))$$

- $-v_2$ from reaction plane analysis
- A from fit in non-jet region (0.75 < $|\Delta \phi|$ < 2.24)
- Quantify deviations for jet cone region (|∆φ|<0.75) and back-to-back region (2.24<|∆φ|<3.14):

$$ratio = \frac{\int d(\Delta\phi) [C_2(Au + Au) - A^*(1 + 2v_2^2 \cos(2\Delta\phi))]}{\int d(\Delta\phi) [C_2(p+p)]}$$

John Harris (Yale University)

Energy loss in cold matter

Modification of fragmentation fn in eA: dE/dx ~ 0.5 GeV/fm for 10 GeV quark

F. Arleo, hep-ph/0201066 R^{DY}(HVPt, x₁) 3.5 З 2.5 2 1.5 1 GeV/ fm 0.5 = 1.5 GeV/ fm x1

Drell-Yan production in π-A: dE/dx <0.2 GeV/fm for 50 GeV quark

Relativistic Heavy Ion Physics at the SPS

- 1986 1987 : Oxygen @ 60 & 200 GeV/nucleon
- 1987 1992 : Sulphur @ 200 GeV/nucleon
- 1994 2000 : Lead @ 40, 80 & 158 GeV/nucleon
- 2002 2003 : Indium and Lead @ 158 GeV/nucleon + proton beams for reference studies

John Harris (Yale University)

Gluon Saturation – the RHIC & HERA Connection

- Gluon densities at RHIC
 - at low x and their Q²
 evolution *same* as in
 saturation models for HERA:
 - A.M. Stasto, K. Golec-Biernat, J. Kwiecinski, Phys. Rev. Lett. 86, 596 (2001)
 - J. Bartels, K. Golec-Biernat, H. Kowalski hep-ph/0203258
- Much activity to determine
 - the precise connection
 - implications for other RHIC observables

John Harris (Yale University)