BaBar explores CP violation

Y.Karyotakis

Stanford Linear

On behalf of the BaBar Collaboration **ICHEP 2002** Amsterdam

Outline

- Physics motivation
- PEPII & The BaBar Experiment
- $\boldsymbol{\cdot}$ Measurement of sin2 $\boldsymbol{\beta}$
 - ➤ Golden Modes (b→ccs)
 - > Tree + Penguin modes (b \rightarrow dds)
 - > Pure Penguin modes (b \rightarrow sss)
- Measurement of sin2 α $_{effective}$
 - CP violating asymmetries
 - ≻ Β→ππ, ρπ
 - > $B \rightarrow h\pi^0, \pi^0\pi^0$ branching ratios
- Direct CP asymmetries
- Conclusion

New physics, ex: coupling between super-symmetric and SM fields introduce new phases which may reshape the unitarity triangle

<u>CP asymmetry</u>

B factories measure time dependent asymmetries between $B^{\rm 0}$ and $B^{\rm 0}$ decay rates

$$A_{f_{CP}}(t) = \frac{\Gamma\left(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}\right) - \Gamma\left(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}\right)}{\Gamma\left(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}\right) + \Gamma\left(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}\right)}$$

$$= \frac{2\Im m \lambda_{f_{cP}}}{1 + |\lambda_{f_{cP}}|^{2}} \sin\left(\Delta m_{d}t\right) - \frac{1 - |\lambda_{f_{cP}}|^{2}}{1 + |\lambda_{f_{cP}}|^{2}} \cos\left(\Delta m_{d}t\right)$$

$$\int S_{f}$$
Interference between C_{f}
mixing and decay.
 (α, β, γ) measurement

CP violation in mixing $\lambda_{f_{cp}} = \eta_{f_{cp}} \left| \frac{q}{p} \right| \left| \frac{A_{\overline{f}_{cp}}}{A_{f_{cp}}} \right| e^{-2i\varphi_{cp}}$

Direct CP violation. Need more than one amplitude with different weak and strong phases.

3.1 GeV e+ on 9 GeV e- cms boost $\langle \beta \gamma \rangle$ = 0.55

- Peak Luminosity = 4.60×10^{33} cm⁻² s⁻¹ (3 × 10³³ cm⁻² s⁻¹ design)
- Positron current = 1775 mA
- Electron current = 1060 mA
- Number of bunches = 800
- IP beam sizes = 147 μ m \times 5 μ m

Data sample

•Used in the analysis 81.2 fb⁻¹ on peak 9.6 fb⁻¹ off-peak

~88M BB pairs considered

The detector

- SVT: 5 double side layers, 97% efficiency, 15 μm z hit resolution
- DCH : 40 axial and stereo layers
- **Tracking:** σ(p_T)/p_T = 0.13 % × p_T + 0.45 %, σ(z₀) = 65μ @ 1 GeV/c
- DIRC: 144 quartz bars EMC: 6580 CsI(Tl) crystals $\sigma_{E}/E = 2.3 \% \cdot E^{-1/4} \oplus 1.9 \%$ IFR: 19 RPC layers, muon and K_L id

Experimental measurement

Tagging and Vertexing

Lepton's and Kaon's sign tags B flavor
 Improved effective tagging efficiency

Compared to $Q=26.0 \pm 0.8$

Az resolution 180µm

Tagging efficiency and vertex resolution measured from the data

$$A_{CP}(t) = \frac{f(\bar{B}^0_{phys} \to f_{CP}) - f(B^0_{phys} \to f_{CP})}{f(\bar{B}^0_{phys} \to f_{CP}) + f(B^0_{phys} \to f_{CP})} = -\eta_{CP} \sin 2\beta \sin(\Delta m \Delta t)$$

Yields

 η_{c} has been added to the sample

$$\eta_c \rightarrow K_s K^+ \pi^- \text{ and } \eta_c \rightarrow K^+ K^- \pi^0$$

<u>CP asymmetries</u>

 $sin2\beta = 0.741 \pm 0.067 (stat) \pm 0.033 (syst)$

Submitted to PRL, hep-ex/0207042

sin2 β results (b \rightarrow ccs)

All consistent $P(\chi^2) = 57\%$

Constraining the ρ , η plane

Beyond the Standard Model

>No direct CP violation in the SM

$$A_{CP}(t) = S_{f} \sin(\Delta m_{d} t) - C_{f} \cos(\Delta m_{d} t)$$
$$C = \frac{(1 - |\lambda_{f_{o}}|^{2})}{1 + |\lambda_{f_{o}}|^{2}}$$

>Leave λ free and fit for $|\lambda|$ and S_f

Only
$$b \rightarrow (c\bar{c})K_s$$

$$\begin{aligned} |\lambda| &= 0.948 \pm 0.051(\text{stat}) \pm 0.017 \text{ (syst)} \\ \text{and} \qquad S_{\text{f}} &= 0.759 \pm 0.074 \text{ (stat)} \end{aligned}$$

$B^{0} \rightarrow \phi K^{0}_{S}$ pure penguin, tree highly suppressed

<u>Measuring sin2 α </u>

Experimentalists measure $\alpha_{eff} \neq \alpha$ due to non negligible penguin contributions

$B^0 \rightarrow \pi \pi$, Kπ, KK

- Small branching ratios (few \times 10^{-6})
- Important continuum background
 - Topological variables
 - Kinematics

BUT The key issue is Particle Identification

First results presented last year

Branching fractions and direct CP violation

- Maximum Likelihood to extract branching ratios and $K\pi$ asymmetries
- No tagging or vertexing needed

Direct CP violation

$$A_{K\pi} \equiv \frac{Br(B^0 \to K^- \pi^+) - Br(B^0 \to K^+ \pi^-)}{Br(\overline{B^0} \to K^- \pi^+) + Br(B^0 \to K^+ \pi^-)} \sim \left| \frac{P}{T} \right| \sin(\gamma) \sin(\delta)$$

Mode	Yield	BR (10 ⁻⁶)	Α _{Kπ}
$B^{0} \rightarrow \pi^{+}\pi^{-}$	157 ± 19	4.7 ±0.6 ±0.2	
$B^{0} \rightarrow K^{+}\pi^{-}$	589 ± 30	17.9 ±0.9 ±0.7	-0.102 ±0.050 ±0.016
$B^0 \rightarrow K^+ K^-$	1 ± 8	<0.6 (90%CL)	

<u>m_{es} and ΔE for $B^0 \rightarrow \pi^+\pi^-$ </u>

From unbinned maximum likelihood fit

 $S_{\pi\pi} = 0.02 \pm 0.34(stat) \pm 0.05(syst)$ $C_{\pi\pi} = -0.30 \pm 0.25(stat) \pm 0.04(syst)$

From
$$\alpha_{eff}$$
 to α
Isospin analysis is
required to extract α .
 $2\alpha_{eff} = 2\alpha + \kappa_{\pi\pi}$
Need to measure
 $B^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ $B^{0} \rightarrow \pi^{0}\pi^{0}$ and $\overline{B^{0}} \rightarrow \pi^{0}\pi^{0}$
 $\beta Or put a limit on $BR(B^{0} \rightarrow \pi^{0}\pi^{0})$
 $|2\alpha - 2\alpha_{eff}| \leq \arccos\left[\frac{1}{\sqrt{1-C_{\pi\pi}^{2}}}\left(1-2\frac{BR(\pi^{0}\pi^{0})}{BR(\pi^{\pm}\pi^{0})}\right)\right]$$

July 29,'02 ICHEP2002, Y.Karyotakis

Charles

Mode	Yield	BR (10 ⁻⁶)	Α
$B^{0} \rightarrow \pi^{+}\pi^{0}$	$125^{+23}_{-21}\pm10$	$5.5^{+1.0}_{-0.9} \pm 0.6$	$-0.03^{+0.18}_{-0.17}\pm0.02$
$B^0 \rightarrow K^+ \pi^0$	$239^{+21}_{-22}\pm 6$	$12.8^{+1.2}_{-1.1}\pm1.0$	$-0.09 \pm 0.09 \pm 0.01$
$B^{0} \rightarrow K^{0} \pi^{0}$	$86 \pm 13^{+3}_{-2}$	$10.4 \pm 1.5 \pm 0.8$	$0.03 \pm 0.36 \pm 0.09$

B⁰ $\rightarrow \pi^0 \pi^0$ branching ratio

Tagging and energy flow to reduce background
 B[±] → ρ[±] π⁰ is reduced cutting on the π[±]π⁰ invariant mass and ΔE.

 $\succ \epsilon(B^0 \rightarrow \pi^0 \pi^0) = 16.5\%$

Fit results : $n_{\pi^0 \pi^0} = 23^{+10}_{-9}$ $BR(B^0 \to \pi^0 \pi^0) < 3.6 \times 10^{-6} at 90\% CL$

Central Value :

 $BR(B^{0} \to \pi^{0}\pi^{0}) = (1.6^{+0.7}_{-0.6}(stat) + 0.6_{-0.3}(syst)) \times 10^{-6}$

Br(B→ρπ) = (28.9 ± 5.4 ± 4.3)×10⁻⁶

Not a CP eigenstate Four amplitudes

$$f_{B^{0}tag}^{\rho^{\pm}h^{\mp}} = (1 \pm A_{CP}{}^{\rho h}) \begin{bmatrix} 1 + \frac{\Delta D}{2} + \langle D \rangle ((S_{\rho h} \pm S_{h}) \sin(\Delta m \Delta t) - (C_{\rho h} \pm S_{h}) \cos(\Delta m \Delta t)) \end{bmatrix}$$

$$Tagging dilution \qquad No CP$$

$$A_{B^{0}/B^{0}} \Box S_{\rho \pi} \sin(\Delta m_{d} \Delta t) - C_{\rho \pi} \cos(\Delta m_{d} \Delta t)$$

$$\Delta C_{\rho \pi} \Box 0.4 \qquad From naïve factorization \qquad \Delta S_{\rho \pi} \qquad Sensitive to phase differences$$

B⁰→ ρπ **Direct CP** Violation

$$A_{+-} = \frac{N(\overline{B_{\rho\pi}^{0}} \to \rho^{+}\pi^{-}) - N(\overline{B_{\rho\pi}^{0}} \to \rho^{-}\pi^{+})}{N(\overline{B_{\rho\pi}^{0}} \to \rho^{+}\pi^{-}) + N(\overline{B_{\rho\pi}^{0}} \to \rho^{-}\pi^{+})}$$
$$A_{-+} = \frac{N(\overline{B_{\rho\pi}^{0}} \to \rho^{-}\pi^{+}) - N(\overline{B_{\rho\pi}^{0}} \to \rho^{+}\pi^{-})}{N(\overline{B_{\rho\pi}^{0}} \to \rho^{-}\pi^{+}) + N(\overline{B_{\rho\pi}^{0}} \to \rho^{+}\pi^{-})}$$

 $A_{+-} = -0.82 \pm 0.31 (stat) \pm 0.16 (syst)$ $A_{-+} = -0.11 \pm 0.16 (stat) \pm 0.09 (syst)$

$$R = \frac{Br(B^{-} \rightarrow D^{0}K^{-})}{Br(B^{-} \rightarrow D^{0}\pi^{-})} = (8.31 \pm 0.35 \pm 0.20)\%$$
and
$$(B^{+} \rightarrow D^{0}K^{+}) = |A| e^{i\delta_{2}} e^{i\gamma} (V_{ub}^{*}V_{cs})$$

$$A(B^{+} \rightarrow D^{0}K^{+}) = \sqrt{2}A(B^{-} \rightarrow D^{0}K^{+})$$

$$A(B^{+} \rightarrow D^{0}K^{+}) = \sqrt{2}A(B^{-} \rightarrow D^{0}K^{+})$$

$$A(B^{+} \rightarrow D^{0}K^{+}) = \sqrt{2}A(B^{-} \rightarrow D^{0}K^{+})$$

$$A(B^{+} \rightarrow D^{0}K^{+}) = A(B^{-} \rightarrow D^{0}K^{+})$$

$$A(B^{+} \rightarrow D^{0}K^{+}) = A(B^{-} \rightarrow D^{0}K^{+})$$

$$A_{CP} \equiv \frac{Br(B^- \rightarrow D_{CP}^0 K^-) - Br(B^+ \rightarrow D_{CP}^0 K^+)}{Br(B^- \rightarrow D_{CP}^0 K^-) + Br(B^+ \rightarrow D_{CP}^0 K^+)} = 0.17 \pm 0.23^{+0.09}_{-0.07}$$

Direct CP measurements summary

No evidence for direct CP violation yet

Conclusion

- Measurement of sin2 β = 0.741 ± 0.067 ± 0.033
- New modes, T+P or P, may open the window on new physics
- Time dependent asymmetries for $B^0 \rightarrow \pi^+\pi^-$ and $B^0/\overline{B^0} \rightarrow \rho^{\pm}\pi^{\pm}$
- Building blocks, BR($B^0 \rightarrow \pi^0 \pi^0$ and $B^+ \rightarrow \pi^+ \pi^0$), for an isospin analysis are on place

BaBar starts exploring the exciting physics for which it has been built

Strategy for measuring $\phi = (\alpha, \beta, \gamma)$

- Extract sin2¢ or (S_f) from theoretically clean modes. 'Only' tree diagram contributions.
 - C_f=0 and no direct CP violation is expected
 Test unitarity as foreseen from the SM
- Use modes where the tree contribution is not dominant, to explore new frontiers in physics.
 - Penguin bring extra weak and strong phases
 - $> C_f \neq 0$ in general.
 - $> S_f \neq sin(2\phi)$

Analysis techniques

• Continuum background is rejected using topological variables ex:

 $\cdot \cos(\theta_s)$ angle between sphericity axes of B and remaining tracks.

• Fisher discriminant from L_0 and L_2 $L_i = \sum p_i |\cos \theta_i|^J$

• Time resolution functions and effective tagging efficiency are measured directly from the data, using Cabibbo favored fully reconstructed B decays, ~ 25K events.

• Simultaneous unbinned maximum likelihood fit, using CP signal events and B flavor sample to extract branching ratios, asymmetries or CP parameters.

(m $_{es},\,\Delta E,\,F,...$) PDFs for signal and background are the input parameters for the fit

PDFs determined using control samples or Monte Carlo

Variables used

Beam - energy substituted mass

$$\boldsymbol{m}_{es} = \sqrt{(\boldsymbol{s}/2 + \overrightarrow{\boldsymbol{p}_i \boldsymbol{p}_B})^2 / \boldsymbol{E}_i^2 - \boldsymbol{p}_B^2}$$

s,p_i and E_i cm kinematic variables in the lab frame p_B and $E_B\,$ B candidate

$$\Delta E = E_B^* - \frac{\sqrt{s}}{2}$$

Fully reconstructed B sample

 Time resolution functions and effective tagging efficiency are measured directly from the data, using Cabbibo favored fully reconstructed B⁻ decays, (b → cud or b → ccs).

 $B^{0} \to D^{(*)-}\pi^{+}/\rho^{+}/a_{1}^{+}$ $B^{-} \to D^{(*)0}\pi^{-}$ $B^{0} \to J/\psi K^{*0}(K^{+}\pi^{-})$ $D^{+} \to L/\psi K^{+} \psi (2 \Omega) K^{+}$

 $B^+ \rightarrow J/\psi K^+, \ \psi(2S)K^+$

Effective tagging efficiency Q

$$\sigma(\sin 2\beta) \Box \frac{1}{\sqrt{Q}} \qquad \begin{cases} l^- \to \overline{B^0} & l^+ \to B^0 \\ K^- \to \overline{B^0} & K^+ \to B^0 \end{cases}$$

Tagging Performance							
Category	Efficiency (ε)	Mistag Fr. (ω)	δ Mistag	Q=ε(1-2 ω) ²			
Lepton	9.1 ± 0.2	3.3 ± 0.6	-1.4 ± 1.1	7.9 ± 0.3			
Kaon I	16.7 ± 0.2	9.9 ± 0.7	-1.1 ± 1.1	10.7 ± 0.4			
Kaon II	19.8 ± 0.3	20.9 ± 0.8	-4.2 ± 1.1	6.7 ± 0.4			
Inclusive	20.0 ± 0.3	31.6 ± 0.9	-2.0 ± 1.2	2.7 ± 0.3			
Total	65.6 ± 0.5			28.1 ± 0.7			

Improved effective tagging efficiency compared to the past. 7% equivalent more luminosity

<u>CP asymmetry in the tagging categories for the (cc) $K_{\underline{s}}$ sample</u>

Control sample asymmetry

No asymmetry observed as expected

Systematic Errors for sin2 β

Largest source comes from backgrounds

- CP of Argus BG is zero in default fit. Attempt to fit for it in SB. Difference is systematic (very conservative).
- Klong BG contributions
 - Composition of J/ ψ X BG : 0.007
 - Shape/reslution of ΔE : 0.007

Some improvements over last iteration

- Switched from PDG 2000 to PDG 2002 for B lifetime and Δm_d . PDG uncertainties down by x2 (thanks to us). Both were 0.010 last time.
- Peaking BG now split by mode. $J/\psi K_s$ has the lowest (0.3%, others >1.2%). Was 0.013, now 0.007.
- MC bias correction (or MC statistics). Used x7 more MC this time. We understand part of the bias. Was 0.014, now 0.010.

Source	δ sin2 β
CP and Mix BG	0.017
Klong BG	0.015
Δt meas. and RF	0.017
Signal Dilutions	0.012
Fit bias correction	0.010
B lifetime	0.004
Δm_d	0.003
Total	0.033

Total from winter 2002 result (56 fb⁻¹) was 0.035

Pure or dominated penguin decays (II)

 $B^0 \rightarrow \eta' K^0_{S}$: tree is color and Cabbibo suppressed

Still working on that