

Phenomenology from lattice QCD

Laurent Lellouch

lellouch@cpt.univ-mrs.fr

CPT, Marseille

Thanks to: D Becirevic, J Charles, S Collins, J Flynn, L Guisti, S Hashimoto, V Lubicz, G Martinelli, F Parodi, S Sint, A Stocchi, N Yamada and the LOC

Apologies to everyone whose work I will not have time to cover

Objectives of lattice QCD

- 6 Establish that QCD is theory of strong interactions also in NP domain (e.g. structure functions, hadronic spectra) (parallel talk by S Collins)
- 6 Fix the fundamental parameters of QCD (e.g. quark masses, α_s) (see also parallel talk by S Collins)
- Determine the NP QCD corrections to weak processes involving quarks (e.g. B-B̄ mixing and UT) (see also parallel talks by D Becirevic and J Simone)
 → see e.g. S Ryan at Lattice 2001 for a recent review of some charm results
- 6 Understand QCD at finite-T and/or density (plenary talk by M Alford)
- 6 Make predictions for exotic hadrons (e.g. $b\overline{b}g$) (parallel talk by S Collins)
- 6 Understand mechanism(s) of confinement and χ SB

In particle phenomenology \rightarrow contribute to and learn from rich experimental program of next few years: *B*-factories (constraining UT, rare decays, ...), **Tevatron Run II** (ΔM_{B_s} , $\Delta \Gamma_{B_s}$, *b*-hadron lifetimes, ...), **CLEO-c** (leptonic and semileptonic *D* decays, masses of quarkonia, hybrids, glueballs, ...), LHC ...

Why lattice QCD? (1)

Confinement \rightarrow fundamental quark (gluon) properties must be inferred from properties of hadrons

 \Rightarrow need non-perturbative (NP) QCD tool to relate experiment to underlying theory

Lattice gauge theory \longrightarrow mathematically sound definition of NP QCD:

- 6 UV (and IR) cutoffs and a well defined path integral
- finite # of dof's + euclidean spacetime
 ⇒ numerical evaluation of path integral using stochastic methods
- 6 errors due to discretization $\sim (a\Lambda_{QCD})^n, (ap_{\mu})^n$

 \Rightarrow hadronic observables obtained directly from QCD lagrangian (i.e. *first principles*)

 \Rightarrow well defined and quantifiable statistical and systematic uncertainties (parametric size of errors known)

 \Rightarrow errors can be made arbitrarily small w/ stats $\rightarrow \infty$ and $a \rightarrow 0$ (in principle . . .)

Lattice QCD in practice: cost and quenching

- 6 Numerically very demanding: # of d.o.f. $\sim 32^3 \times 64 \times (4 \cdot 8 + 4 \cdot 3) \sim \mathcal{O}(10^8)$
- 6 Cost of fully including sea quark effects is very high and increases rapidly as the sea quark mass is reduced
 - \Rightarrow "popularity" of quenched approximation ($N_f = 0$)-valence quarks treated exactly and sea quark effects treated as a mean field:
 - + large savings in computer time
 - not a systematic approximation

Quenching error on light hadron masses $\sim \mathcal{O}(10\%)$ (CP-PACS, 1998)

6 More and more unquenched results, most partially quenched (2 light sea quarks instead of 3) → we are still learning how to control systematics in these calculations Increase in numerical cost and in finite volume effects as m_q is reduced $\Rightarrow N_f = 2$ calculations have $m_q \gtrsim m_s/2$ or $M_{\pi}^{lat} \gtrsim M_K^{expt}$ (exception: MILC with $N_f = 3$ and $m_q \gtrsim m_s/4$)

- \Rightarrow chirally extrapolate $m_q \rightarrow m_u, m_d$:
 - 6 extrapolation well controlled?
 - 6 M_{π}^{lat} in chiral regime? (i.e. can χ PT be used?)

Chiral structure of quenched theory often very different from that of full theory \rightarrow how best to extrapolate to chiral limit?

... in practice: heavy quarks and discretization errors

With relativistic heavy quarks, discretization errors $\sim (am_Q)^n \Rightarrow$ need $m_Q \ll a^{-1}$ \Rightarrow with $a^{-1} \sim 2 - 4$ GeV, *b*-quark cannot be simulated directly

- 6 Relativistic quarks: (usually O(a)-improved Wilson) Charm region (and some) is accessible \longrightarrow extrapolate to $1/M_B$ using HQ scaling
 - extrapolation can be significant
 - $(am_Q)^n$ errors may be amplified (if done at finite *a*)
- Effective theories: HQET, NRQCD, Fermilab

Heavy quark mass is subtracted from the dynamics and quantities expanded in $1/m_Q$:

- + discretization errors $\sim a \Lambda_{\rm QCD}$, $a |\vec{p}|$ instead of $a m_b$
- need $1/m_b$ corrections \Rightarrow perturbative uncertainties from "renormalon shadow" can be significant (Bernard, 2001)
- continuum limit cannot be taken in NRQCD
- 6 Combination of relativisitc and HQET results
 - + interpolation rather than extrapolations

Should be done with $a \rightarrow 0$ and NP renormalization

At current levels of implementation, can be viewed as complementary (for most quantities)

Heavy quark masses

charm quark mass

Discretization errors are a worry and low order HQET not reliable \rightarrow simulate relativistic QCD and take $a \rightarrow 0$

Bare masses tuned until the experimental value of an observable is reproduced (e.g. M_{D_s} or spin avg $c\bar{c}(1S)$)

Progress this year (still quenched)

Becirevic et al, 2002

- 6 modern version of Gimenez et al, 1998 (+ Giusti et al, 2000)
- 6 quenched, O(a)-improved Wilson ($a^{-1} \sim 2.7 \text{ GeV}$) instead of Wilson,
- 6 input: M_{D_s} $(M_{D_s^*}) \to m_c$ and $M_K \to m_s$ with $M_{K^*} \to a^{-1}$
- 6 NP renormalization (RI/MOM) at $\sim 3 \text{ GeV}$ and N³LL conversion to RGI and $\overline{\text{MS}}$ masses (Chetyrkin et al, 2000) instead of NLL

6 a number of systematics considered

 $m_c^{\overline{\mathsf{MS}}}(m_c) = 1.26(3)(12) \text{ GeV}$

• Juge et al are performing modern version of Kronfeld (preliminary, 1997): N²LO renormalization instead of NLO, spin avg $c\bar{c}(1S) \rightarrow m_c$, 1*P*-1*S*-splitting $\rightarrow a^{-1}$ and several lattice spacings

First continuum limit

- Rolf and Sint (ALPHA) (to appear)
 - 6 quenched, O(a)-improved Wilson, 4 lattice spacings ($a^{-1} \sim 2 \rightarrow 4 \text{ GeV}$)
 - 6 input: $M_{D_s} \to m_c$ and $M_K \to m_s$, m_s/\hat{m} from $\chi PT(r_0 = 0.5 \text{ fm})$
 - 6 3 definitions of bare mass: VWI, $\bar{c}s$ -AWI and $\bar{c}c$ -AWI (non-singlet)
 - 6 NP renormalization and running à la ALPHA $\rightarrow m_c^{\text{RGI}} = \text{RGI}$ -mass fully nonperturbatively
 - N³LL conversion to MS

(Not shown: result from combination of sumrule techniques and lattice computations (Bochkarev et al, 1996))

Summary

$$m_c^{\overline{\text{MS}}}(m_c^{\overline{\text{MS}}}) = 1.30(4)(20) \text{ GeV}$$

with a 15% quenching error

Compare, PDG 2002: 1.0 GeV $\leq m_c^{\overline{\text{MS}}}(m_c^{\overline{\text{MS}}}) \leq 1.4 \text{ GeV}$ (without lattice)

 \rightarrow Need now an unquenched calculation

Reminder: for *b*, must use a heavy-quark expansion

$$M_B = m_b^{\text{bare}} + \mathcal{E} + \mathcal{O}(\Lambda_{\text{QCD}}^2/m_b)$$

= $m_b^{\text{pole}} - \delta m + \mathcal{E} + \mathcal{O}(\Lambda_{\text{QCD}}^2/m_b)$
 $\uparrow \qquad \uparrow$
 $1/a \qquad 1/a \leftarrow \text{cancel}$

 M_B : receives both short- and long-distance contributions \rightarrow would require QCD simulation on large and very fine lattice \rightarrow not possible at present without an EFT ($a^{-1} \sim 2 - 4$ GeV)

 ${\cal E}$: binding energy contains long-distance part of M_B \rightarrow can be computed in HQET on large but only reasonably fine lattices

 $m_b^{\text{bare}}, \, \delta m$: contain short-distance part of M_B

 \rightarrow two strategies

1) "Perturbative"

C)

- a) \mathcal{E} numerically with lattice HQET
- b) δm in HQET PT, 3-loops $(N_f = 0)$ and 2-loops $(N_f \neq 0)$ (Martinelli et al, 1999; Di Renzo et al, 2001; Trottier et al, 2002)

$$m_b^{\overline{\text{MS}}}(m_b^{\overline{\text{MS}}}) = c(m_b^{\overline{\text{MS}}})(M_B + \delta m - \mathcal{E}) + \mathcal{O}(\Lambda_{\text{QCD}}^2/m_b)$$

with $c(m_b^{MS})$ at 3-loops (Chetyrkin et al, 1999; Melnikov et al, 2000) Problems:

- 6 $\mathcal{E} \delta m \sim \alpha_s^4/a$, large as $a \to 0$
- 6 δm has a renormalon ambiguity $\sim O(\Lambda_{\rm QCD})$ which cancels against the one in $c(m_b^{\overline{\rm MS}})$ (Beneke et all, 1994; Bigi et al, 1994)

 \Rightarrow must go to highest possible order in PT ($\delta m_b^{\overline{\text{MS}}} \sim 200 \text{ MeV}$ at NLO, $\sim 100 \text{ MeV}$ at N²LO and $\sim 50 \text{ MeV}$ at N³LO, for $N_f = 0$)

 $\Rightarrow a \rightarrow 0$ impossible and left with $(a\Lambda_{\rm QCD})^n$ and α_s^4 errors

2) Non-perturbative (Heitger + Sommer, Lattice 2001/2002)

New method for matching QCD and HQET fully non-perturbatively and in the continuum limit \Rightarrow solves the problems of "perturbative" method

A sketch:

a) Observe that $(M(L_0, m_b^{\mathsf{RGI}}, a) \xrightarrow{L_0 \to \infty, a \to 0} M = M_B)$

$$m^{\text{bare}}(m^{\text{RGI}}, a) = M(L_0, m^{\text{RGI}}, a) - \mathcal{E}(L_0, a) + \mathcal{O}(1/L_0^2 m, \cdots)$$

is independent of $L_0 \Rightarrow$ for $m \sim m_b$, can also consider on small $(1/\Lambda_{\rm QCD} \ge L_0 \gg 1/m_b)$ and fine-grained $(am_b \ll 1)$ lattices where discretization errors are small

b) Equate $m^{\text{bare}}(m^{\text{RGI}}, a)$ from small (L_0) and large (L) boxes and ...

$$M \simeq \underbrace{\mathcal{\mathcal{E}}(L, a_n) - \mathcal{\mathcal{E}}(L_n, a_n)}_{\Delta \mathcal{\mathcal{E}}_n(a_n)} + \cdots - \mathcal{\mathcal{E}}(L_1, a_1) + \underbrace{\mathcal{\mathcal{E}}(L_1, a_0) - \mathcal{\mathcal{E}}(L_0, a_0)}_{\Delta \mathcal{\mathcal{E}}_0(a_0)} + M(L_0, m^{\mathsf{RGI}}, a)$$

where one takes $L > L_n = 2^n L_0 > \cdots > L_0$ (allowing $a \le a_0 \le \cdots \le a_n$)

c) For each $\Delta \mathcal{E}_i$:

- ⁶ range of scales is not too large \rightarrow discretization errors can be kept under control with a same a_i
- 6 $1/a_i$ divergence cancels $\rightarrow \Delta \mathcal{E}_i$ is finite

 \Rightarrow compute them on reasonable lattices using lattice HQET and take $a_i \rightarrow 0$

d) Take continuum limit of $M(L_0, m^{\text{RGI}}, a)$ in lattice QCD in small physical volume for a number of m^{RGI} around m_b^{RGI} (\Rightarrow range of scales reasonable) and interpolate to value which solves (they choose $L_0 \simeq 0.2$ fm, n = 2, $L \simeq 1.5$ fm $\sim 2^3 L_0$ and M_{B_s} instead of M_B)

$$M(L_0, m^{\mathsf{RGI}}) = M_B - \sum_{i=0}^n \Delta \mathcal{E}_i$$

 $\longrightarrow m^{\text{RGI}} = m_b^{\text{RGI}} + \mathcal{O}(1/L_0^2 m_b, \cdots)$ $\longrightarrow \text{convert to } m_b^{\overline{\text{MS}}} \text{ using } N^3 \text{LL running}$

 \rightarrow Generalizable to other $1/m_b$ corrections in HQET

Results

- 5 NRQCD results are obtained from M_{Υ} at finite *b* mass (all at NLO)
- ⁶ Collins et al and Gimenez et al have preliminary quenched N³LO results compatible with N²LO Gimenez et al but with smaller perturbative uncertainty ~ 50 MeV
 - $N_f = 2$ result shows no significant change wrt $N_f = 0$ (Gimenez et al, 2000), but only two $m_{sea} \sim m_s/2 \rightarrow m_s$; should be checked with further unquenched studies

NP result a bit on high side \longrightarrow difference should be investigated

Summary

$$m_b^{\overline{\text{MS}}}(m_b^{\overline{\text{MS}}}) = 4.38(9)(10) \text{ GeV}$$

where second error is an estimate of the remaining quenching uncertainty (10% on B_s binding energy)

Lattice QCD for the unitarity triangle

$$\begin{split} \Delta m_{d} &= C_{B} M_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}} A^{2} \lambda^{6} [(1-\bar{\rho})^{2} + \bar{\eta}^{2}] \\ \Delta m_{d} &= \frac{M_{B_{d}}}{\Delta m_{s}} \xi^{-2} \lambda^{2} [(1-\bar{\rho}^{2}) + \bar{\eta}^{2}] \\ |\epsilon_{K}| &= C_{K} \hat{B}_{K} A^{2} \lambda^{6} \bar{\eta} [A^{2} \lambda^{4} (1-\bar{\rho}) S_{tt} + S_{tc}] \\ |\frac{V_{ub}}{V_{cb}}| &= \lambda/(1-\lambda^{2}/2) \sqrt{\bar{\rho}^{2} + \bar{\eta}^{2}} \\ \text{Lattice QCD} \rightarrow f_{B_{d}} \sqrt{\hat{B}_{B_{d}}}, \xi, \hat{B}_{K} \end{split}$$
 and similarly for $B_{K}(\mu) \\ \xi = \frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}} (0|\bar{b}\gamma_{\mu}\gamma_{5}q|B_{q}(p)) = ip_{\mu}f_{B_{q}} \\ (0|\bar{b}\gamma_{\mu}\gamma_{5}q|B_{q}(p)) = ip_{\mu}f_{B_{q}} \end{split}$

B-\overline{B}-mixing: f_B

Though they are correlated, it is useful to separate the study of $\Delta B = 2$ matrix element into f_B and B_B .

- 6 Results obtained w/ different HQ approaches broadly agree (relativistic vs EFT) ⇒ HQ mass dependence appears to be under control
- 6 W.A. of quenched results have remained stable in the past 6 years (e.g. $f_B: 165(23) \text{ MeV} \rightarrow 178(20) \text{ MeV}$)

- 6 $N_f = 2$ calculations show increase in f_B over $N_f = 0$ of up to O(15%)but only small effects in f_{B_s}/f_B
- 6 MILC (2001), first $N_f = 3$ results (preliminary)

 $f_B^{N_f=3} > f_B^{N_f=2}, \quad f_B^{N_f=3} / f_B^{N_f=0} = 1.23(4)(6), \quad (f_{B_s}/f_B)^{N_f=3} = 1.18(1)_{-1}^{+4}$

6 New method (finite volume technique) put forward by Guagnelli et al, 2000 and first quenched result: $f_B = 170(11)(??)$ MeV

All results assume mild extrapolations (mostly linear) of f_{B_q} in m_q from $m_q \sim m_s/2$ to $m_{u,d}$

 \Rightarrow is the chiral behavior under control? (serious issue for UT fits, due to importance of $\Delta m_s / \Delta m_d$ constraint)

Light quark mass dependence from (PQ) χ PT (Grinstein et al, 1992; Booth, 1994; Sharpe and Zhang, 1996) ($N_f = 2$) ($m_{val} = m_{sea}$ for f_B)

$$\frac{f_B \sqrt{M_B}}{\phi_B^{(0)}} = 1 - \frac{3}{8} (1 + 3g^2) \left(\frac{M_{sea,sea}}{4\pi F}\right)^2 \ln \frac{M_{sea,sea}^2}{\Lambda_{f_B}^2} + \text{h.o.t} + \mathcal{O}(\frac{1}{M_B})$$

and a similar expression for f_{B_s} , with g heavy-quark limit $B^*B\pi$ coupling

CLEO (2002) determines $g_c = 0.59(7)$ using its $\Gamma_{D^{*+}}$ (consistent with recent lattice calculation of $g_{D^*D\pi}$ (Abada et al, 2002))

 \rightarrow consider $g \sim 0.6$ in what follows (predictions 0.2 < g < 0.7 (Colangelo et al, 2002))

They conclude, comparing quadratic and log fits: $(\delta f_B)_{\text{chi. extrap.}} = -17\%$ (see also Kronfeld & Ryan, 2002)

Comments:

- Obtained a straight for the straight of the
- 6 Find NLO correction of $\mathcal{O}(60\%)$ ⇒ cannot ignore h.o.t.'s (NLO χ PT not expected to hold up to 1 GeV)
- $= F_{\pi} \text{ vs } M_{\pi}^2 \text{ not consistent with log behavior, while coefficient is comparable }$

- ⁶ χ PT results obtained at leading order in $1/M_B$; however $1/M_B$ corrections may be significant for light-quark masses in the data region
- ⁶ χ PT at leading order in $1/M_B$ does not distinguish light-quark mass behavior of $f_B \sqrt{M_B}$ and f_B ; f_B will have milder light-quark mass behavior and fits should show less variation
- 6 setting $g \sim g_c$ is valid up to $1/m_c$ corrections
- 6 Work at fixed $\beta \Rightarrow$ lattice shrinks by $\sim 25\%$ as $M^2_{sea,sea}$ goes from heaviest to lightest \Rightarrow volume and *a* dependence which can be interpreted as $M^2_{sea,sea}$ dependence in fit
- 6 Modelling of h.o.t.'s and allowing log to set in at lighter masses → variations generically less than 10%

Conclusion:

- O Data for $f_B \sqrt{M_B}$ exhibits significant light-quark mass dependence \rightarrow more work is needed to understand extent to which it is physical
- ⁶ Coefficent of log quite large when $g \sim 0.6 \Rightarrow$ effect could be significant (more work needed on g; to determine up to what masses NLO behavior may stay dominant; to determine to what extent $1/M_B$ corrections can modify picture)
- (δf_B) chi. extrap. $\sim -10\%$ and (δf_{B_s}) chi. extrap. negligible compared to other systematics seem reasonable

B-\overline{B}-mixing: B_B

Many fewer calculations, but situation with chiral extrapolation and unquenching appears to be much more favorable than with f_B

- 6 Chiral log is $\sim (1 3g^2) \sim -0.1$ instead of $\sim (1 + 3g^2) \sim 2.1$, for $g \sim 0.6$
- 6 Very little variation in going from $N_f=0 \rightarrow N_f=2$

(Figs from Yamada (JLQCD), CERN CKM-Workshop, 2002 and Lattice 2002)

 $1/M_B$ dependence over full range of masses does not show clear trend (small residual systematics?) but is mild and different formulations agree at physical point

- 6 All methods give fully consistent results: cancellation of errors in ratio
- 6 No visible unquenching effects
- 6 Mild light-quark mass dependence \Rightarrow small error on $B_{B_s}/B_B \sim 3\%$
- $1/M_B$ dependence should be clarified

B-B-**mixing**: summary

Keep only most recent calculations (> 1998 for $N_f = 0$ and > 1999 for $N_f = 2$) and omit those which have not yet made it into proceedings or papers $N_f = 3$ estimates:

$$f_B = 203(27)^{+0}_{-20} \text{ MeV} \qquad f_{B_s} = 238(31) \text{ MeV} \qquad \frac{f_{B_s}}{f_B} = 1.18(4)^{+12}_{-0}$$
$$\hat{B}_B^{NLO} = 1.34(12) \qquad \hat{B}_{B_s}^{NLO} = 1.34(12) \qquad \frac{\hat{B}_{B_s}^{NLO}}{\hat{B}_B^{NLO}} = 1.00(3)$$
$$f_B \sqrt{\hat{B}_B^{NLO}} = 235(33)^{+0}_{-24} \text{ MeV} \qquad f_{B_s} \sqrt{\hat{B}_{B_s}^{NLO}} = 276(38) \text{ MeV}$$
$$\xi \equiv \frac{f_{B_s} \sqrt{B_{B_s}}}{f_B \sqrt{B_B}} = 1.18(4)^{+12}_{-0}$$

where asymmetric error is due to uncertainty in chiral extrapolation

Note: ξ obtained from $\Delta B = 2$ matrix elements directly comes out larger than through definition given above, but error bars are large (Bernard et al, 1998; LL et al, 2001)

K- \overline{K} -mixing: B_K

New O(a)-improved Wilson results (SPQ_{cd}R, 2002) (preliminary) (talk by Becirevic):

- 6 high statistics
- 6 3 lattice spacings ($a^{-1} \sim 2.0 \rightarrow 3.4 \text{ GeV}$) and continuum limit
- Spurious mixing with wrong chirality 4-quark ops subtracted or eliminated through use of Ward identity (Becirevic et al, 2000)
- 6 NP renormalization in RI/MOM scheme

Two studies with overlap fermions (have an exact chiral-flavor symmetry at finite a) (preliminary):

- 6 First weak matrix element studies with overlap fermions
- 6 Validate theoretically clean overlap fermions as a useful phenomenological tool
- 6 Verify that explicit breaking of flavor symmetry (staggered) or chiral symmetry (Wilson) is controlled in standard calculations
- 6 Check domain wall fermion (DW) calculations

- 2) DeGrand, Lattice 2002
 - 6 1 lattice spacing ($a^{-1} \sim 1.7~{
 m GeV}$), $m_s \lesssim m \lesssim 2.5 m_s$
 - 6 1-loop renormalization

More overlap and DW calculations on the way

ALPHA is performing a high stat. calculation of \hat{B}_{K} with tmQCD (twisted mass QCD)

K-K-mixing: summary (1)

- Results consistent in continuum limit
- 5 DW results are slightly lower (residual chiral symmetry breaking?)
 - Reference result is still from quenched staggered JLQCD (1998) calculation (weak point: perturbative renormalization)
- 6 Quenching: $\delta B_K \sim 15\%$ (OSU $N_f = 3$ and $Q\chi PT$)
- 6 $m_d = m_s \rightarrow m_d \neq m_s$: $\delta B_K \sim 5\%$ (χPT)

(Sharpe 1992, 1996)

Final number

 $B_K^{NDR}(2\,\text{GeV}) = 0.628(42)(99) \longrightarrow \hat{B}_K^{NLO} = 0.86(6)(14)$

with \hat{B}_{K}^{NLO} two-loop RGI *B*-parameter

- 6 Same result as in LL, Lattice 2000
- 6 Clarify situation regarding DW results
- 6 Need unquenched studies to reduce the 15% quenching error in order to maintain impact of indirect CPV in the kaon system on UT (talk by Parodi)

Semileptonic decays

 $|V_{cb}|$ plays important rôle in constraining UT \rightarrow must be determined precisely

6 Can extracted from differential rate

$$\frac{d\Gamma}{d\omega} \sim |V_{cb}|^2 |\mathcal{F}_{D^*}(w)|^2$$

extrapolated to zero recoil, i.e. $w = v_B \cdot v_{D^*} = 1$

- 6 HQET and Luke's theorem predict: $\mathcal{F}_{D^*}(1) = 1 + \mathcal{O}(1/m_Q^2)$, but precise measurement of $|V_{cb}|$ requires reliable determination of $\mathcal{F}_{D^*}(1) 1$
- ⁶ Through clever use of double ratios of matrix elements for $D^{(*)}, B^{(*)} \rightarrow D^{(*)}, B^{(*)}$ Kronfeld et al (2001) reconstruct, in a quenched calculation at 3 values of the lattice spacing (parallel talk by Simone)

$$\mathcal{F}_{D^*}(1) = 0.913^{+24+17}_{-17-30}$$

This important calculation, which requires excellent control of statistical and systematic errors, should be performed by other groups

 $\mathcal{F}(1)$ for $B \to D^* \ell \nu$

Enables measurement of $|V_{ub}|$ (no normalization by HQS here)

 $\langle \pi(k) | \bar{u} \gamma_{\mu} b | \bar{B}(p) \rangle \longrightarrow F_{+}(q^{2}), \ F_{0}(q^{2})$

Quenched calculations by four groups using relativistic, FNAL and NRQCD quarks:

(Becirevic, ICHEP 2002)

Need now an unquenched calculation

good consistency on $F^+(q^2)$ which determines rate when $m_\ell \to 0$

- error is of $\mathcal{O}(20\%)$
 - Fit of lattice results to BK parametrization (Becirevic et al, 2000) which incorporates most of known constraints on the form factors → extrapolation consistent with LCSR (Khodjamirian et al, 2000)

 $R \rightarrow \tau$

- Large range of quantities of central importance to particle physics is being computed in lattice QCD simulations, many of which could not be presented here
- 5 For those that were, emphasis now on reduction of systematic errors (quenching, ...)
- Not mentioned: potentially large reduction in uncertainties obtained by combining ratios of b-quark to equivalent charm quark matrix elements computed on the lattice with charm measurements from e.g. CLEO-c

Also not discussed:

- Major advances in the last few years associated with the formulation and implementation on the lattice fermions which have an exact continuum-like chiral-flavor symmetry at finite *a* (i.e. overlap, domain wall or fixed-point action fermions ∈ Ginsparg-Wilson fermions)
- 6 ⇒ new possibilities for the calculation of weak matrix elements, in particular those associated with the $\Delta I = 1/2$ rule and direct CP violation in $K \rightarrow \pi\pi$ decays (cf DWF calculations by CP-PACS and RBC, 2001; analytical work by Capitani et al, 2000)

- investigation of a numerically unexplored regime of QCD in which the correlation length of pion fields $\gg L$ (ϵ regime of Gasser et al (1987))
- 6 has allowed, in the quenched approximation, the calculation of one of the low-energy constants (LECs) of the strong chiral lagrangian (Hernández et al, 1999; DeGrand, 2001; Hasenfratz et al, 2001)
- It is conceivable to generalize this approach to extract the LECs of the weak chiral Lagrangian by studying the weak interactions in the ε regime; a numerical investigation is under way (Giusti et al, in preparation)
- ⁶ More generally, the range of approaches and the quantities studied in lattice QCD is constantly expanding \longrightarrow should be exciting new results to present at ICHEP 2004