(Forward Look at) Physics at the LHC

Paris Sphicas CERN and Univ. of Athens International Conference for High Energy Physics Amsterdam, July 2002

Outline

- The LHC quick introduction/reminder
- Higgs search; reach, properties
- SUSY:
 - Sparticles (squarks/gluinos/gauginos)
 - Precision measurements
- Other (possible) new physics
- TeV-scale gravity

Summary

EWK Symmetry Breaking (EWSB)

- EWSB requires (at least) one new particle
 - And energy scale of EWSB must be ~ TeV
 - To preserve unitarity of V-V (V=W, Z) scattering matrix
- Current wisdom: SB mechanism generates Goldstone bosons → longitudinal degrees of freedom for W & Z
 - But underlying nature of dynamics not known → two possibilities: weakly-coupled and strongly-coupled dynamics
- Weakly-coupled: self-interacting scalar fields
 - Self-interaction \rightarrow non-vanishing vev
 - Then: interactions with bosons/fermions \rightarrow mass to them
 - Must stabilize mass of the field. Embed in SUSY.
- Strongly-coupled: new strong interaction at ~TeV scale
 - Fermion-antifermion pair condensates; repeat exercise
- Recently, whole new "world": extra space dimensions

Higgs Production in pp Collisions

\rightarrow Proton Proton Collider with $E_p \ge 7 \text{ TeV}$

P. Sphicas/ICHEP2002

A machine for EWK Symmetry Breaking

- Superconducting SuperCollider (SSC)
 - Would have 2nd-generation results
- Large Hadron Collider
 - Use existing LEP tunnel

pp cross section and min. bias

- # of interactions/crossing:
 - Interactions/s:
 - Lum = 10^{34} cm⁻²s⁻¹= 10^{7} mb⁻¹Hz $\frac{1}{3}$
 - $\sigma(pp)$ = 70 mb
 - Interaction Rate, $R = 7x10^8$ Hz
 - Events/beam crossing:
 - $\Delta t = 25 \text{ ns} = 2.5 \times 10^{-8} \text{ s}$
 - Interactions/crossing=17.5
 - Not all p bunches are full
 - Approximately 4 out of 5 (only) are full
 - Interactions/"active" crossing = 17.5 x 3564/2835 = 23

Operating conditions (summary):

1) A "good" event containing a Higgs decay +

2) \approx 20 extra "bad" (minimum bias) interactions

Center of mass energy (GeV)

pp collisions at 14 TeV at 10³⁴ cm⁻²s⁻¹

20 min bias events overlap \blacksquare H \rightarrow ZZ $Z \rightarrow \mu \mu$ $H \rightarrow 4$ muons: the cleanest ("golden") **Reconstructed tracks** with pt > 25 GeV signature And this (not the H though...) repeats every 25 ns...

Physics selection at the LHC

P. Sphicas/ICHEP2002

Standard Model Higgs

Information (limits) on M_H: summary

$$M_{H}^{2} > \frac{3G_{F}\sqrt{2}}{8\pi^{2}}F\log(\Lambda^{2}/v^{2})$$

Precision EWK measurements

SM Higgs at the LHC

Production mechanisms & cross section

SM Higgs

Decays & discovery channels

- Higgs couples to m_f^2
 - Heaviest available fermion (b quark) always dominates
 - Until WW, ZZ thresholds open
- Low mass: b quarks→ jets; resolution ~ 15%
 - Only chance is EM energy (use γγ decay mode)
- Once $M_H > 2M_Z$, use this
 - W decays to jets or lepton+neutrino (E_T^{miss})

Low mass Higgs (M_H<140 GeV/c²)

• $H \rightarrow \gamma \gamma$: decay is rare (B~10⁻³)

- But with good resolution, one gets a mass peak
- Motivation for LAr/PbWO₄ calorimeters
- Resolution at 100 GeV, σ≈1GeV

● S/B ≈ 1:20

Intermediate mass Higgs

μ

High mass Higgs

• $H \rightarrow ZZ \rightarrow \ell^+ \ell^-$ jet jet

- Need higher Branching fraction (also vv for the highest masses ~ 800 GeV/c²)
- At the limit of statistics

Higgs discovery prospects @ LHC

- The LHC can probe the entire set of "allowed" Higgs mass values
 - in most cases a few months at low luminosity are adequate for a 5σ observation

SM Higgs properties (I): mass

Mass measurement

- Limited by absolute energy scale
 - leptons & photons: 0.1% (with Z calibration)
 - Jets: 1%
- Resolutions:
 - For γγ & 4ℓ ≈ 1.5 GeV/c²
 - For bb $\approx 15 \text{ GeV/c}^2$
- At large masses: decreasing precision due to large Γ_H
- ♦ CMS ≈ ATLAS

SM Higgs properties (II): width

SM Higgs; (indirect) width for M_H<2M_Z

- Basic idea: use qq→qqH production (two forward jets+veto on central jets)
 - Can measure the following: $X_j = \Gamma_W \Gamma_j / \Gamma$ from $qq \rightarrow qqH \rightarrow qqjj$
 - Here: j = γ , τ , W(W*); precision~10-30%
 - One can also measure $Y_j = \Gamma_g \Gamma_j / \Gamma$ from $gg \rightarrow H \rightarrow jj$
 - Here: j = γ, W(W*), Z(Z*); precision~10-30%
 - Clearly, ratios of X_j and Y_j (~10-20%) \rightarrow couplings
 - But also interesting, if Γ_W is known:
 - $\Gamma = (\Gamma_W)^2 / X_W$
 - Need to measure $H \to WW^*$
 - $\varepsilon = 1 (B_b + B_{\tau} + B_W + B_Z + B_g + B_{\gamma}) << 1$
 - $(1-\varepsilon)\Gamma_W = X_\tau (1+y) + X_W (1+z) + X_\gamma + X_g$
 - $z = \Gamma_W / \Gamma_Z$; $y = \Gamma_b / \Gamma_\tau = 3\eta_{QCD} (m_b / m_\tau)^2$

Zeppenfeld, Kinnunen, Nikitenko, Richter-Was

SM Higgs properties (III)

- Biggest uncertainty(5-10%): Luminosity
 - Relative couplings statistically limited
 - Small overlap regions

Measure	Error	M _H range
$\frac{B(H \to \gamma \gamma)}{B(H \to b \overline{b})}$	30%	80–120
$\frac{B(H \to \gamma \gamma)}{B(H \to ZZ^*)}$	15%	125–155
$\frac{\sigma(t\bar{t}H)}{\sigma(WH)}$	25%	80–130
$\frac{B(H \to WW^{(*)})}{B(H \to ZZ^{(*)})}$	30%	160–180

SM Higgs: properties (IV)

Need higher statistics, i.e. luminosities; for example, $WW^{(*)}$ with ℓv +jetjet channel visible (with 10x the statistics) Measures λ to 20-25%

P. Sphicas/ICHEP2002

MSSM Higgs(es)

MSSM Higgs(es)

- Complex analysis; 5 Higgses (Φ=H[±];H⁰,h⁰,A⁰)
 - At tree level, all masses & couplings depend on only two parameters; tradition says take M_A & tanβ
 - Modifications to tree-level mainly from top loops
 - Important ones; e.g. at tree-level, $M_h < M_z \cos\beta$, $M_A < M_H$; $M_W < M_{H^+}$; radiative corrections push this to 135 GeV.
 - Important branch 1: SUSY particle masses
 - (a) M>1 TeV (i.e. no Φ decays to them); well-studied
 - (b) M<1 TeV (i.e. allows Φ decays); "on-going"
 - Important branch 2: stop mixing; value of $tan\beta$
 - (a) Maximal–No mixing
 - (b) Low (1.5) and high (\approx 30) values of tan β

MSSM Higgses: masses

- Mass spectra for M_{SUSY}>1TeV
 - ♦ The good news: M_h<135 GeV/c²

MSSM: h/A decay

Higgs channels considered

H,**A** $\rightarrow \tau \tau$; 3rd-generation lepton the LHC

- Most promising modes for H,A
 - τ's identified either in hadronic or leptonic decays
 - Mass reconstruction: take

lepton/jet direction to be the τ direction

P. Sphicas/ICHEP2002

LHC Physics

H, A reach via τ decays

• Contours are 5σ ; M_{SUSY}=1 TeV

H⁺ detection

Associated top-H⁺ production:

- Use all-hadronic decays of the top (leave one "neutrino")
- H decay looks like W decay → Jacobian peak for τ-missing E_T
- In the process of creating full trigger path + ORCA analysis

 $pp \rightarrow tH^{\pm}, H^{\pm} \rightarrow \tau v, t \rightarrow qab$

 $m_{\mu} = 400 \text{ GeV}, \tan\beta = 30$

300

 m_{τ} (τ jet, E_t^{miss}) [GeV]

30

25

20

15

10

5

0

100

200

Events for 10⁵pb⁻¹/ 20 GeV

 $E_{T}(jet)>40$

Veto on extra

jet, and on

second top

Bkg: ttH

|η|<2.4

500

 $L_{t} = 100 \text{ fb}^{-1}$

Signal

55 events

400

SUSY reach on $tan\beta$ -M_A plane

• Adding $b\overline{b}$ on the τ modes can "close" the plane

Observability of MSSM Higgses

P. Sphicas/ICHEP2002

If SUSY charg(neutral)inos < 1 TeV (I)

- Decays $H^0 \rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_2$, $\tilde{\chi}^+_i \tilde{\chi}^-_j$ become important
 - Recall that $\tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 \ell^+ \ell^-$ has spectacular edge on the dilepton mass distribution
 - Example: $\tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}$. Four (!) leptons (isolated); plus two edges

Central point in MSSM parameter space :

$$\begin{split} \mathbf{M}_{A,H} &= 350 \; \mathrm{GeV} \quad \tan \beta = 5 \\ \mathbf{M}_{\widetilde{I}} &= 250 \; \mathrm{GeV} \quad \mu = -500 \; \mathrm{GeV} \\ \mathbf{M}_{\widetilde{\chi}_{1}^{0}} &= 60 \; \mathrm{GeV} \quad \mathbf{M}_{\widetilde{\chi}_{2}^{0}} &= 110 \; \mathrm{GeV} \\ \mathbf{M}_{\widetilde{q}} &= \mathbf{M}_{\widetilde{g}} &= 1 \; \mathrm{TeV} \end{split}$$

P. Sphicas/ICHEP2002

If SUSY charg(neutral)inos < 1 TeV (II)

Helps fill up the "hole"

MSSM: Higgs summary

- At least one ϕ will be found in the entire M_A-tan β plane
 - latter (almost) entirely covered by the various signatures
 - ♦ Full exploration requires 100 fb⁻¹
 - Difficult region: $3 < \tan\beta < 10$ and $120 < M_A < 220$; will need:
 - > 100 fb⁻¹ or h \rightarrow bb decays
 - Further improvements on τ identification?
 - Intermediate tanβ region: difficult to disentangle SM and MSSM Higgses (only h is detectable)
- Potential caveats (not favored)
 - Sterile (or "invisible") Higgs
 - Light gluino (~10 GeV), decays to sbottom (~few GeV), does not couple to Z, etc
 - Leads to hadronic (but non-b) decays of the H; e.g. Berger et al, hep-ph0205342

Strong "EWK" interactions

Strong boson-boson scattering

Example: W_LZ_L scattering

- W, Z polarization vector \mathcal{E}^{μ} satisfies: $\mathcal{E}^{\mu}p_{\mu}=0$;
 - for p_{μ} =(E,0,0,p), \mathcal{E}^{μ} =1/M_V(p,0,0,E) $\approx P^{\mu}/M_{V}$ +O(M_V/E)
- Taking $M_H \rightarrow \infty$ the H diagram goes to zero (~ $1/M_H^2$)
- Technicalities: diagrams are gauge invariant, can take out one factor of s
 - but the second always remains (non-abelian group)
- Conclusion: to preserve unitarity, one must switch on the H at some mass
 - Currently: $M_H \le 700 \text{ GeV}$

The no Higgs case: V_LV_L scattering

- Biggest background is Standard Model VV scattering
 - Analyses are difficult and limited by statistics

Non-resonant W⁺W⁺ scattering

Other resonances/signatures

- Technicolor; many possibilities
 - Example: $\rho_T^{\pm} \rightarrow W^{\pm}Z^0$ $\rightarrow \ell^{\pm} \nu \ell^+ \ell^-$ (cleanest channel...)
 - Many other signals (bb, strain tresonances, etc...)
 - Wide range of observability

Supersymmetry

Sparticles

SUSY @ LHC

SUSY decays

Squarks & gluinos produced together with high σ

- Gauginos produced in their decays; examples:
 - $\tilde{q}_L \rightarrow \tilde{\chi}_2^{\ 0} q_L$ (SUGRA P5)
 - $\widetilde{q} \rightarrow \widetilde{g} q \rightarrow \widetilde{\chi}_2^{\ 0} q \overline{q}$ (GMSB G1a)
- Two "generic" options with χ^0 :
 - (1) $\chi_2^0 \rightarrow \chi_1^0 h$ (~ dominates if allowed)
 - (2) $\chi_2^0 \to \chi_1^0 \ell^+ \ell^- \text{ or } \chi_2^0 \to \ell^+ \ell^-$
- Charginos more difficult
 - Decay has v or light q jet
- Options:
 - Look for higgs (to bb)
 - Isolated (multi)-leptons

SUSY mass scale

• Events with \geq 4jets + E_T^{miss}

- ♦ Clean: S/B~10 at high M_{eff}
- Establish SUSY scale ($\sigma \approx 20\%$)

$$M_{\rm eff} = \sum_{j=1}^{4} P_{{\rm T},j} + E_{\rm T}^{\rm miss}$$

SUSY

- Huge number of theoretical models
 - Very complex analysis; MSSM-124
 - Very hard work to study particular scenario
 - assuming it is available in an event generator
 - To reduce complexity we have to choose some "reasonable", "typical" models; use a theory of dynamical SYSY breaking
 - mSUGRA
 - GMSB
 - AMSB (studied in less detail)
 - Model determines full phenomenology (masses, decays, signals)

SUGRA: the (original) five LHC points

Defined by LHCC in 1996

- Most of them excluded by now...
 - Easy to bring them back
- Points 1,3,5: light Higgses
 - LEP-excluded (3; less for 1,5)
 - Restore with larger $tan\beta$
- Points 1&2:
 - Squark/gluinos ≈ 1TeV
- Point 4: at limit of SB
 - Small μ^2 , large χ, ϕ mixing
 - Heavy squarks
- Point 5: cosmology-motivated
 - Small $m_0 \rightarrow$ light sleptons
 - \rightarrow increase annihilation of χ_1^0
 - \rightarrow reduce CDM

Р	M ₀	M _{1/2}	A_0	taneta	s(µ)
1	400	400	0	2	+
2	400	400	0	10	+
3	200	100	0	2	-
4	800	200	0	10	+
5	100	300	300	2.1	+

P. Sphicas/ICHEP2002

• "Prototype": $\widetilde{\chi}_2^0 \rightarrow \widetilde{\chi}_1^0 \ell^+ \ell^-$

- Straightforward:
 - dileptons + E_T^{miss}
- Example from P3
 - SM even smaller with b's
 - Also works at other points
 - But additional SM (e.g. Z⁰)
- ♦ △M measurement easy
 - Position of edge; accurate
- Point excluded, but main point (dilepton-edge) still valid at other points

Experimentally: spectacular signatures

Dileptons @ other points

- At P4 large Branching fractions to Z decays:
 - e.g. B(_{X̃3}→_{X̃1.2}Z⁰)≈1/3; size of peak/P_T(Z)→info on masses and mixing of heavier gauginos (model-dependent)

SUGRA reach

Using all signatures

- tanβ=2;A₀=0;sign(μ)=-
- But look at entire m₀-m_{1/2} plane
- Example signature:
 - N (isolated) leptons +
 ≥ 2 jets + E_T^{miss}
 - 5σ (σ=significance) contours
- Essentially reach is ~2

 (1) TeV/c² for the m₀
 (m_{1/2}) plane

Varying tanβ

τ modes eventually become important

Overall reach

SUSY parameters; SUGRA

Point/Lumi	m ₀ (GeV)	m _{1/2} (TeV)	tanβ	S (μ)
P1 @100fb ⁻¹	400±100	400±8	2.00±0.08	ok
P2 @100fb ⁻¹	400±100	400±8	10±2	ok
P4 @100fb ⁻¹	800±50	200±2	10±2	ok
P5 @10fb ⁻¹	100±4	300±3	±0.1	ok

Essentially no information on A_0 (A_{heavy} evolve to fixed point independent A_0)

SUSY: precision measurements

GMSB observation

Example: G1a; same dilepton edge

- Decay observed: $\widetilde{\chi}_2^0 \to \widetilde{\ell}^{\pm} \ell^{\mp} \to \widetilde{\chi}_1^0 \ell^{\pm} \ell^{\mp} \to \widetilde{G} \gamma \ell^+ \ell^-$
- Selection is simple:
 - M_{eff}>400 GeV
 - E_T^{miss}>0.1M_{eff}
 - Demand same-flavor leptons
 - Form $e^+e^- + \mu^+\mu^- e^\pm\mu^\mp$
- G2b: very similar to SUGRA
 - χ_1^0 is long-lived, escapes
 - Decay observed:
 - $\widetilde{\chi_2}^0 \to \widetilde{\ell^{\pm}} \ell^{\mp} \to \widetilde{\chi_1}^0 \, \ell^+ \ell^-$
 - M_{eff}>1 TeV; rest of selection as in G1a

SUSY parameter measurements (G1a)

SUSY mass measurements (G1a)

- Measurement of edge positions: very accurate
 - Worse resolution on linear fit (e.g. $min(M(\ell \ell \gamma)) \rightarrow$
 - Low luminosity: ±0.5 GeV; High lumi: ±0.2 GeV (syst).
 - One can extract masses of $\tilde{\chi}_2^0$, $\tilde{\chi}_1^0$, $\tilde{\ell}_R$
 - Model-independent (except for decay, rate and interpretation of slepton mass as mass of $\widetilde{\ell}_{\rm R}$)
- Next step: reconstruct G momentum
 - Motivation: can then build on $\tilde{\chi}_2^0$ to reconstruct M_q and M_g
 - 0C fit to $\tilde{\chi}_2^0 \rightarrow \tilde{G} \gamma \ell^+ \ell^-$ (with M_G=0)
 - Momentum to 4-fold ambiguity
 - Use evts with 4 leptons + 2 photons
 - E_T^{miss} fit to resolve solns: min(χ^2):

$$\chi^{2} = \left(\frac{E_{x}^{miss} - P_{1x} - P_{2x}}{\Delta E_{x}^{miss}}\right)^{2} + \left(\frac{E_{y}^{miss} - P_{1y} - P_{2y}}{\Delta E_{y}^{miss}}\right)$$

SUSY Summary

- SUSY discovery (should be) easy and fast
 - Expect very large yield of events in clean signatures (dilepton, diphoton).
 - Establishing mass scale is also easy (M_{eff})
- Squarks and gluinos can be discovered over very large range in SUGRA space (M₀,M_{1/2})~(2,1)TeV
 - Discovery of charginos/neutralinos depends on model
 - Sleptons difficult if mass > 300 GeV
 - Evaluation of new benchmarks (given LEP, cosmology etc) in progress
- Measurements: mass differences from edges, squark and gluino masses from combinatorics
- Can extract SYSY parameters with ~(1-10)% accuracy

Other new Physics BSM

Other resonances/signatures (I)

New vector bosons

Z' reach

P. Sphicas/ICHEP2002

Compositeness

■ Usual excess @ high P_T(jet) expected

- Tricky issue:
 calorimeter (non)linearity
- Analysis proceeds
 via angular distribution

$$\chi = \frac{1 + |\cos\theta^*|}{1 - |\cos\theta^*|}$$

Ultimate reach:
 Λ_{comp} ~ 40 TeV
 (depends on understanding non-linearity @ 1-2% level)

Excited quarks

• Search for $q^* \rightarrow q\gamma$

LHC Physics

TeV-scale gravity

Naturalness

SUSY: the mass protector

- $\delta M_W^2 \sim (\alpha/\pi) \Lambda^2 >> (M_W)^2$; But with SUSY $\delta M_W^2 \sim (\alpha/\pi) |M_{SP} M_P|^2$
 - The pro-LHC argument: correction small $\rightarrow M_{SP} \sim 1 \text{TeV}$
 - Lots of positive side-effects:
 - LSP a great dark-matter candidate;
 - unification easier;
 - poetic justice: why would nature miss this transformation? (complete transforms in the Poincare group – only SUSY escapes Coleman-Mandula no-go theorem)

• SUSY does not answer why $G_F \sim (M_W)^{-2} > (M_{PL})^{-2} \sim G_N$

But it (at least) allows it

TeV-scale gravity

- The idea of our times: that the scale of gravity is actually not given by M_{PL} but by M_W
 - Strings live in >4 dimensions. Compactification \rightarrow 4D "SM". M_{PL-4} related to M_{PL-(4+d)} via volume of xtra dimensions:
 - $M_{PL-4}^2 \sim V_d M_{PL-(4+d)}^{2+d}$
 - Conventional compactification: very small curled up dims, M_{PL-4}~M_{PL-(4+d)}
 - $V_d \sim (M_{PL-4})^{-d}$
 - Alternative: volume is large; large enough that V_d>>(M_{PL-(4+d)})^{-d}
 - Then $M_{PL-(4+d)}$ can be ~ TeV (!)
 - "our" Planck mass at log(Λ)~19: an artifact of the extrapolation

Getting M_{PL-4}~1TeV

- Can be, if V_d is large; this can be done in two ways:
 - By hand: large extra dimensions (Arkani-Hamed, Dimopoulos, Dvali)
 - Size of xtra dimensions from ~mm for d=2 to ~fm for d=6
 - But gauge interactions tested to ~100 GeV
 - Confine SM to propagate on a brane (thanks to string theory)
 - Rich phenomenology
 - Via a warp factor (Randall-Sundrum)
 - $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} + g_{mn}(y) dy^m dy^n$
 - (x: SM coordinates; y: d xtra ones)
 - Generalize: dependence on location in xtra dimension
 - $ds^2 = e^{2A(y)} g_{\mu\nu} dx^{\mu} dx^{\nu} + g_{mn}(y) dy^m dy^n$
 - Large exp(A(y)) also results in large V_d
 - As an example (RS model), two 4-D branes, one for SM, one for gravity, "cover" a 5-D space – with an extra dim in between

Extra (large) dimensions

- Different models, different signatures:
 - Channels with missing E_T : E_T^{miss} +(jet/ γ) (back-to-back)
 - Direct reconstruction of KK modes
 - Essentially a W', Z' search
 - Warped extra dimensions (graviton excitations)

e.g. in Giudice, Ratazzi, Wells (hep-ph/9811291)

e.g. in Hewett (hep-ph/9811356)

Extra dimensions (I): E_T^{miss}+Jet

M_D=5Te

Issue: signal & bkg topologies same; must know shape of bkg vs

e.g. E_T^{miss}

- Bkg: jet+W/Z;
- $Z \rightarrow vv; W \rightarrow \ell v.$

10 ²

10

Reach @ 5σδM_D (TeV)R_D27.510 μm35.9200 pm45.31 pm

Events / 20 GeV

10

 $M_{-} = 5 \text{ TeV}$

🔀 jW(τν)

jZ(vv)

Signal

M_n = 7 TeV

jW(ev), jW(μv)

E^{__}miss

🔀 jW(τν)

iZ(vv)

関 Signal

M_D=7Te\

KK resonances+angular analysis

- If graviton excitations present, essentially a Z' search.
 - Added bonus: spin-2 (instead of spin-1 for Z)
 - Case shown*: G→e⁺e[−]

for M(G)=1.5 TeV

• Extract minimum σ .B for which spin-w hypothesis is favored (at 90-95%CL)

* B.Allanach,K.Odagiri,M.Parker,B.Webber JHEP09 (2000)019

En passant

TeV-scale gravity is attracting a lot of interest/work

- Much is recent, even more is evolving
- Turning to new issues, like deciding whether a new dilepton resonance is a Z' or a KK excitation of a gauge boson
 - In the latter case we know photon, Z excitations nearly degenerate
 - One way would be to use W' (should also be degenerate, decays into lepton+neutrino)
 - » But this could also be the case for additional bosons...
- Example: radion phenomenology
 - Radion: field that stabilizes the brane distance in the RS scenario. Similar to Higgs. Recent work suggests it can even mix with the Higgs.
 - Can affect things a lot
- Stay tuned, for this is an exciting area

Black Holes at the LHC (?) (I)

Always within context of "TeV-scale gravity"

- Semi-classical argument: two partons approaching with impact parameter < Schwarzschild radius, $R_S \rightarrow$ black hole
 - $R_{S} \sim 1/M_{P} (M_{BH}/M_{P})^{(1/d+1)}$ (Myers & Perry; Ann. Phys 172, 304 (1996)
- From dimensions: $\sigma(M_{BH}) \sim \pi R_S^2$; $M_P \sim 1 \text{TeV} \rightarrow \sigma \sim 400 \text{ pb}$ (!!!)
 - \bullet Absence of small coupling like α
- LHC, if above threshold, will be a Black Hole Factory:
 - At minimum mass of 5 TeV: 1Hz production rate

Giddings & Thomas hep-ph/0106219

Assumptions:

 M_{BH} >> M_{P} ; in order to avoid true quantum gravity effects... clearly not the case at the LHC – so caution

Black Holes at the LHC (II)

Decay would be spectacular

• Determined by Hawking temperature, $T_H \propto 1/R_S \sim M_P (M_P/M_{BH})^{(1/n+1)}$

- Note: wavelength of Hawking $T_H (2\pi/T_H) > R_S$
 - BH a point radiator emitting s-waves
- Thermal decay, high mass, large number of decay products
 - Implies democracy among particles on the SM brane
 - Contested (number of KK modes in the bulk large)

Picture ignores time evolution

...as BH decays, it becomes lighter hotter and decay accelerates (expect: start from asymmetric horizon \rightarrow symmetric, rotating BH with no hair \rightarrow spin down \rightarrow Schwarzschild BH, radiate until M_{BH}~M_P. Then? Few quanta with E~M_P?

More generally: "transplackian physics"; see: Giudice, Ratazzi&Wells, hep-ph0112161

Beyond the LHC

LHC++

P. Sphicas/ICHEP2002

Beyond LHC; LHC++?

- Clearly, a Linear Collider is a complementary machine to the LHC
 - Will narrow in on much of what the LHC cannot probe
 - Still a lot to do; e.g. see (and join/work!) LHC-LC study group http://www.ippp.dur.ac.uk/~georg/lhclc
- As for LHC, a very preliminary investigation of
 - LHC at 10³⁵cm⁻²s⁻¹; LHC at 28 TeV; LHC with both upgrades
 - First look at effect of these upgrades
 - Triple Gauge Couplings
 - Higgs rare decays; self-couplings;
 - Extra large dimensions
 - New resonances (Z')
 - SUSY
 - Strong VV scattering
 - Clearly, energy is better than luminosity
 - Detector status at 10³⁵ needs careful evaluation

Supersymmetry reach @ LHC++

mSUGRA scenario

- Assume R_P conservation
- Generic E_T^{miss}+Jets
- Cuts are optimized to get best S²_{SUSY}/(S_{SUSY}+B_{SM})
 - In some cases 0-2 leptons could be better
- Shown: reach given
 - A₀ = 0; tanβ=10; μ>0
- For 28 TeV @ 10³⁴cm⁻²s⁻¹ probe squarks & gluinos up to ~ 4 TeV/c²
- For 14 TeV @ 10³⁵cm⁻²s⁻¹
 reach is ~ 3 TeV/c²

(Grand) Summary

- Symmetry Breaking in the SM (and beyond!) still not really understood
 - Higgs missing; LHC (and ATLAS/CMS) designed to find it
- Physics at the LHC will be extremely rich
 - SM Higgs (if there) in the pocket
 - Turning to measurements of properties (couplings, etc.)
 - Supersymmetry (if there) ditto
 - Can perform numerous accurate measurements
 - Large com energy: new thresholds
 - TeV-scale gravity? Large extra dimensions? Black Hole production? The end of small-distance physics?
 - And of course, compositeness, new bosons, excited quarks...
 - There might be a few physics channels that could benefit from more luminosity... LHC++?

We just need to build the machine and the experiments