

Measurement of the Muon Anomalous Magnetic Moment to 0.7 ppm

Results from the Data of 2000

<u>Yannis K. Semertzidis</u> <u>Brookhaven National Lab</u> <u>Muon g-2 Collaboration</u> $a_{\mu} = \frac{\omega_{a}}{\frac{e}{m_{\mu}}} \langle B \rangle$

Muon g-2 Collaboration

G.W. Bennett², B. Bousquet⁹, H.N. Brown², G. Bunce², R.M. Carey¹,
P. Cushman⁹, G.T. Danby², P.T. Debevec⁷, M. Deile¹¹, H. Deng¹¹, S.K. Dhawan¹¹,
V.P. Druzhinin³, L. Duong⁹, E. Efstathiadis¹, F.J.M. Farley¹¹, G.V. Fedotovich³,
S. Giron⁹, F. Gray⁷, D. Grigoriev³, M. Grosse-Perdekamp¹¹, A. Grossmann⁶,
M.F. Hare¹, D.W. Hertzog⁷, X. Huang¹, V.W. Hughes¹¹, M. Iwasaki¹⁰,
K. Jungmann⁵, D. Kawall¹¹, B.I. Khazin³, F. Krienen¹, I. Kronkvist⁹,
A. Lam¹, R. Larsen², Y.Y. Lee², I. Logashenko^{1,3}, R. McNabb⁹, W. Meng²,
J. Mi², J.P. Miller¹, W.M. Morse^{2‡}, D. Nikas², C.J.G. Onderwater⁷, Y. Orlov⁴,
C.S. Özben², J.M. Paley¹, Q. Peng¹, C. Polly⁷, J. Pretz¹¹, R. Prigl²,
G. zu Putlitz⁶, T. Qian⁹, S.I. Redin^{3,11}, O. Rind¹, B.L. Roberts^{1‡}, N. Ryskulov³,
P. Shagin⁹, Y.K. Semertzidis², Yu.M. Shatunov³, E.P. Sichtermann¹¹,
E. Solodov³, M. Sossong⁷, A. Steinmetz¹¹, L.R. Sulak¹, A. Trofimov¹,
D. Urner⁷, P. von Walter⁶, D. Warburton², and A. Yamamoto⁸.

¹Department of Physics, Boston University, Boston, Massachusetts 02215 ²Brookhaven National Laboratory, Upton, New York, 11973 ³Budker Institute of Nuclear Physics. Novosibirsk. Russia

⁴Newman Laboratory, Cornell University, Ithaca, New York 14853

⁵ Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen, NL 9747 AA Groningen, The Netherlands

⁶ Physikalisches Institut der Universität Heidelberg, 69120 Heidelberg, Germany

⁷ Department of Physics, University of Illinois at Urbana-Champaign, Illinois 61801

⁸ KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

⁹Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455

¹⁰ Tokyo Institute of Technology, Tokyo, Japan

¹¹ Department of Physics, Yale University, New Haven, Connecticut 06520

†Spokesperson \$Project Manager # Resident Spokesperson

The Muon Storage Ring B ≈ 1.45T, P = 3.09 GeV/c

1 Detectors

•High Proton Intensity from AGS

Muon Injection

5-parameter Function Not Quite Adequate. Fourier Spectrum of the Residuals:

Modulation of N_0 , A, ϕ_a with f_{cbo} :

 $dN/dt = N_0(t)e^{-\frac{t}{\tau}}\left[1 + A(t)\cos(\omega_a t + \phi_a(t))\right]$

Modulation of N_0 , A, ϕ_a with f_{cbo} :

$$dN / dt = N_0(t)e^{-\frac{t}{\tau}} [1 + A(t)\cos(\omega_a t + \phi_a(t))]$$

$$N_{0}(t) = N_{0} \left[1 + A_{N} e^{-\frac{t}{\tau_{cbo}}} \cos(2\pi f_{cbo}t + \phi_{N}) \right]$$
$$A(t) = A \left[1 + A_{A} e^{-\frac{t}{\tau_{cbo}}} \cos(2\pi f_{cbo}t + \phi_{A}) \right]$$
$$\phi_{a}(t) = \phi_{a} + A_{\phi} e^{-\frac{t}{\tau_{cbo}}} \cos(2\pi f_{cbo}t + \phi_{\phi})$$

Modulation of N_0 , A, ϕ_a with f_{cbo} :

$$dN/dt = N_0(t)e^{-\frac{t}{\tau}}\left[1 + A(t)\cos(\omega_a t + \phi_a(t))\right]$$

$$N_{0}(t) = N_{0} \left[1 + A_{N}e^{-\frac{t}{\tau_{cbo}}} \cos(2\pi f_{cbo}t + \phi_{N}) \right]$$
$$A(t) = A \left[1 + A_{A}e^{-\frac{t}{\tau_{cbo}}} \cos(2\pi f_{cbo}t + \phi_{A}) \right]$$
$$\phi_{a}(t) = \phi_{a} + A_{\phi}e^{-\frac{t}{\tau_{cbo}}} \cos(2\pi f_{cbo}t + \phi_{\phi})$$

Amplitudes of A_N , A_A , A_ϕ , Consistent with Values from MC Simulations.

Fit dN/dt of each Detector Separately with the 5-parameter (ideal) Function. Then Fit ω_a versus Detector:

- Straight line fit: $\chi^2/dof=59/21$, $\omega_a/2\pi=229070.60\pm0.14$ Hz
- Sine wave fit: $\chi^2/dof=24/19$, $\omega_a/2\pi=229070.64\pm0.14$ Hz

Fit dN/dt with the 5-parameter Function including the Modulation of N_0 , A, ϕ_a with f_{cbo} . Fit ω_a versus Detector:

• Straight line fit: $\chi^2/dof=24/21$, $\omega_a/2\pi=229070.54\pm0.16$ Hz

• Function Modulating N_0 , A, with f_{cbo} .

- Function Modulating N_0 , A, with f_{cbo} .
- Function Modulating N_0 , A with f_{cbo} .

- Function Modulating N_0 , A, with f_{cbo} .
- Function Modulating N_0 , A with f_{cbo} .
- Strobing the data at f_{cbo} ; ω_a Becomes Independent of f_{cbo} .

- Function Modulating N_0 , A, with f_{cbo} .
- Function Modulating N_0 , A with f_{cbo} .
- Strobing the data at f_{cbo} ; ω_a Becomes Independent of f_{cbo} .
- Ratio Method; ω_a Becomes Independent of Slow Effects, e.g. Muon Losses.

- Function Modulating N_0 , A, ϕ_a with f_{cbo} .
- Function Modulating N_0 , A with f_{cbo} .
- Strobing the data at f_{cbo} ; ω_a Becomes Independent of f_{cbo} .
- Ratio Method; ω_a Becomes Independent of Slow Effects, e.g. Muon Losses.

Systematic Uncertainties for the ω_a Analysis.

Source of Errors	Size [ppm]
Coherent Betatron Oscillations (CBO)	0.21
Pileup	0.13
Gain Changes	0.13
Lost Muons	0.10
Binning & Fitting Procedure	0.06
Others	0.06
Total	0.31

Systematic Uncertainties for the ω_p Analysis.

Source of Errors	Size [ppm]
Absolute Calibration of Standard Probe	0.05
Calibration of Trolley Probe	0.15
Trolley Measurements of B-field	0.10
Interpolation with Fixed Probes	0.10
Uncertainty from Muon Distribution	0.03
Others	0.10
Total	0.24

Computation of
$$a_{\mu}$$
:

$$a_{\mu} = \frac{\omega_{a}}{\frac{e}{m_{\mu}} \langle B \rangle} = \frac{\omega_{a} / \omega_{p}}{\mu_{\mu} / \mu_{p} - \omega_{a} / \omega_{p}}$$

• Analyses of ω_a and ω_p are Separate and Independent ("<u>Blind Analysis</u>"). When Ready, only then, Offsets are Removed and a_μ is Computed.

 $a_{\mu}(SM)=11\ 659\ 178(7)\times 10^{-10}\ (0.6\ ppm)$ See, e.g., review article by J. Hisano, hep-ph/0204100 Also talks by Z. Bern and T. Teubner at ICHEP02

Caution: More $a_{\mu}(SM)$ out there and more to come!

Results

From the Data of 2000: $a_{\mu}(exp)=11\ 659\ 204(7)(5)\times10^{-10}$ (0.7 ppm) Exp. World Average:

 $a_{\mu}(exp)=11\ 659\ 203(8)\times 10^{-10}\ (0.7\ ppm)$

Results

From the Data of 2000: $a_{\mu}(exp)=11\ 659\ 204(7)(5)\times10^{-10}$ (0.7 ppm) Exp. World Average:

 $a_{\mu}(exp)=11\ 659\ 203(8)\times 10^{-10}$ (0.7 ppm)

Outlook

- In 2001 we have collected 3 Billion electrons with E>2GeV from a run with negative muons (μ⁻). Run at n=0.122 and n=0.142.
- We have scientific approval for more running time aiming to collect an extra 6 Billion electrons.

Outlook

- In 2001 we have collected 3 Billion electrons with E>2GeV from a run with negative muons (μ⁻). Run at n=0.122 and n=0.142.
- We have scientific approval for more running time aiming to collect an extra 6 Billion electrons.

• However, the President's budget does not include running time for the AGS & now is in Congress' hands.

Summary:

- $a_{\mu}(exp)=11\ 659\ 203(8)\times 10^{-10}$ (0.7 ppm); Sensitive to EW Contribution.
- Have 3 Billion electrons with E>2GeV from the 2001 run (µ⁻).

Summary:

- $a_{\mu}(exp)=11\ 659\ 203(8)\times 10^{-10}$ (0.7 ppm); Sensitive to EW Contribution.
- Have 3 Billion electrons with E>2GeV from the 2001 run (μ⁻).
- New evaluation of $a_{\mu}(SM)$ is to be announced soon by Davier, Eidelman, *et al.*, including new e⁺e⁻ data.
- More data from Novosibirsk, Beijing, ... will even further improve knowledge of $a_{\mu}(had1)$.

Summary:

- $a_{\mu}(exp)=11\ 659\ 203(8)\times 10^{-10}$ (0.7 ppm); Sensitive to EW Contribution.
- Have 3 Billion electrons with E>2GeV from the 2001 run (μ⁻).
- New evaluation of $a_{\mu}(SM)$ is to be announced soon by Davier, Eidelman, *et al.*, including new e⁺e⁻ data.
- More data from Novosibirsk, Beijing, ... will even further improve knowledge of $a_{\mu}(had1)$.

• Stay Tuned!