Review of Linear Colliders In the Framework of Future World Accelerators

Gregory A. Loew

31st International Conference on High Energy Physics

Amsterdam July 24-31, 2002

Talk Outline

World Family of HEP Accelerators

e⁺e⁻ Colliders

Linear Colliders: The Big Issues

Luminosity, Emittance, Energy

Test Facilities and Hardware Development

Ground Motion, Tuning and Sites

The Future

Present and Future HEP Accelerators

In Operation: DAONE VEPP4 **BEPC I SLAC LINAC CESR, KEK B, PEP II** KEK 12 GeV PS JINR NUCLOTRON **10 GeV ITEP PS 70 GeV SERPUKHOV PS YEREVAN SYNCHROTRON CERN PS and SPS** PETRA, HERA AGS, RHIC **TEVATRON**

Under Construction: VEPP 2000 (2003) JHF (2007) LHC (2007)

Under Proposal, Design or Study: BEPC II (recently funded) CESR-c

TESLA, JLC/NLC, CLIC SUPER *B* FACTORIES MUON RINGS/NEUTRINO FACTORIES VLHC, VLLC EIC, HIP FUTURE TECHNOLOGIES

Cost of e⁺e⁻ Colliders

Costs proportional to Length and Power are equalized [not always the case]

Fixed costs [Injectors, Beam Delivery, Detectors, etc.]

International Collaboration and Competition on R&D Toward LC

A Brief History

1965	First suggestion of Clashing Linacs by M. Tigner
1979	B. Richter proposes SLC, completed in 1988
1983	First papers on large linear collider
1987	B. Richter proposes international collaboration on next e+e- linear collider, biannual LC Workshops are started
1994	Formal International Collaboration Council meets in London and creates Technical Review Committee (TRC)
1995	Publication of first TRC Report
2001	ICFA orders second TRC Report at its February 8-9 meeting at DESY

1995 Options

TESLA SBLC[†] JLC (C) JLC (X) NLC (X) **VLEPP**[†] CLIC

[†]Abandoned subsequently

July 24-31, 2002

TESLA Layout

C-band LC

JUNE/01/1996, H. MATSUMOTO & T. SHINTAKE, KEK

The JLC/NLC Configuration

Overall Layout of the CLIC Complex at 500 GeV C.M.

The Combined Hybrid Linear Collider A great idea that doesn't work

The Big Issues

Robust sources and Pre-linacs

Low Emittance Generation

Low Emittance Preservation

Polarized e⁻ e⁺ (possibly polarized) Damping Rings

Jitters Construction tolerances BPM's Alignment Ground motion Feedbacks

Linear Accelerators

RF Systems, vacuum, supports, cryogenics

Collimation, Beam Delivery, Machine/Detector Interface Final Focus, Beam-Beam Effects Reliability, Availability, Tunability Machine Protection Energy Upgradeability

Luminosity

Luminosity, Emittance Generation and Preservation

$$L = f_{rep} n_b \frac{N^2}{4\pi \sigma_x^* \sigma_y^*} H_D$$

$$\sigma_x^* = \sqrt{\beta_x^* \in_x^*} \quad \sigma_y^* = \sqrt{\beta_y^* \in_y^*}$$

LC	TESLA	JLC/NLC	CLIC	
500 GeV				
DR Extraction	8/0 02	3/0.02	1 6/0 003	
$\gamma \in_x^* / \gamma \in_y^* 10^{-6} m.rad$	0/0.02	5/0.02	1.0/0.003	
IP	40/0 02	2 6/0 04	2/0.02	
$\gamma \in x / \gamma \in y 10^{-6} m.rad$	10/0.03	3.6/0.04	2/0.02	
$\beta_x^* / \beta_y^*(mm)$	15/0.4	8/0.11	10/0.15	
$\sigma_x^*/\sigma_y^*(nm)$	554/5 0	243/3 0	202/2 5	
at IP	JJ 4 /J.U	243/3.0	202/2.5	
P/Beam(MW)	11.3	8.7/6.9	4.9	
H_{D}	2.1	1.5	1.8	
$L(10^{33} cm^{-2} s^{-1})$	34	25/20	14.1	

Energy and RF Structures

Push to low ω

Push to high ω

But transverse wakefields ~ ω^3

Tolerances harder ——>

RF Parameters and Upgrade Strategies

Gradient =
$$K_1 \sqrt{\frac{Pr}{L}} - K_2$$
 ir

LC Gev	TES 500	SLA 800	JLC/ 500	/NLC 800	C] 500	LIC 3000
Unloaded/Loaded Gradient	23.4/23.4	35/35	70/5	5	172	2/150
P _K ^(MW) /N _{Klystrons}	9.7/572	9.7/572	75/ 1872*	75/3744*	50/332	50/364
RF Compression Gain	1			8	32×4	32x22
N _{Sections}	20592	21816	11232	22464	7400	42940
Total AC Power for Linacs	95	160	140	230	100	300

* Numbers are for NLC; numbers for JLC are double July 24-31, 2002

Test Facilities, etc.

- TTF ITwo modules (sixteen 9-cell structures) ~ 25 MV/mElectropolished 9-cell structure reaches 35 MV/m (March 2002)Test of superstructure this SeptemberTests conclude in Fall 2002
- TTF II Commissioning starts summer 2003
- C-Band Tests proceed at KEK and towards FEL construction at SPRING-8 (next three years)
- **ATF (KEK) DR testing for next three years**
- NLCTA (SLAC) X-Band structure tests and 8-pack tests continue for next three years
- ASSET (SLAC) Ongoing collimator and structure tests
- CTF-2 Ends operation in Fall 2002
- CTF-3 Tests will start in late 2004 and continue for 3-5 years

ATF Damping Ring at KEK

Vertical emittance 3.5×10^{-8} measured with laser wire (~2 x NLC spec)

31st International Conference on HEP

July 24-31, 2002

Challenges for Damping Rings

• Damping Rings push the performance limits of electron storage rings

- \backsim required vertical beam size typically ~ 5 μ m
- **v** rapid damping rate from large radiation energy loss per turn (0.4% in TESLA)
- s injection efficiency close to 100% required, for tolerable radiation loads
- There are demanding requirements for many systems and components
 - s < 100 μm alignment tolerances for initial survey on major components
 - \backsim effective coupling correction requires BPM resolution less than 1 μ m
 - diagnostics must be developed for fast, non-invasive beam-size measurements with necessary precision
 - lattice must have large acceptance for injected beam (large dynamic and physical aperture, and momentum acceptance)
 - **injection and extraction kickers need fast rise times (20 ns for TESLA)**
 - **4** damping wiggler must have minimal impact on dynamical stability
 - selectron cloud instability could be a serious problem in the positron rings
 - high bunch charge density can lead to instability through space-charge effects (in TESLA) or emittance growth from intra-beam scattering (in NLC)
 - **s** fast ion instability could require vacuum much better than 1 nTorr

Sketch of the 5m diameter TESLA linac tunnel

The 9-cell niobium cavity for TESLA

24 MV/m achieved in TTF I and 35 MV/m achieved in single test + Superstructure soon to be tested

Figure 1.1.3: Assembly of a string of eight 9-cell cavities in the clean room at TTF.

Clean Rooms Chemical Treatment High Temperature Treatment High Pressure Water Rinsing Electropolishing Test Stands, CW, Pulsed Processing

Phase-I R&D Summary

C-band	Kly stron	RF Pulse	Accelerating
Kly stron	Modulator	Compressor	Structure
50 MW, o K	110 MW ok	Flat Pulse	1.8 m ok
2.5 sec. 47 %	100 pps	Gain 3.3	Choke-Mode
<section-header></section-header>	Smart mo dulator using inverter HV charger. Bunning for klystron life test.	Three-cell cavity. Three-cell cavity. I m long cold model. The back of the set of the	Beam accelera tion at 50 MV/m was done at ATF-KEK, with S-band model. HOM damping perfor mance was prov ed by ASSET- SLAC test, 1998.

July 21 J1, 2002

HOM-Free Linear Accelerating Structure

Cooling water

channel

NLC Main Linac RF System

July 24-31, 2002

JLC X-Band Main Linac Unit

8-Pack Phase-I (SLED-II System)

Periodic Permanent Magnet (PPM) Focused X-Band (1.4 GHz) Klystrons

50 MW/2.4 μs achieved with SLED II yielding 35 MV/m loaded gradient in NLCTA

75 MW/3.2 μs still in R&D at SLAC

75 MW/1.6 μs achieved at KEK/Toshiba

Double Sheet Beam Klystron

July 24-31, 2002

NLC/JLC Rounded Damped-Detuned Structure (RDDS)

- **RDDS** Cutaway View Showing 8 of 206 Cells RF Input - HOM Manifold Beam Accelerator Cell (Iris Dia. = 11.2-7.8 mm)
- Made with Class 1 OFE Copper.
- Cells are Precision Machined (Few μm Tolerances) and Diffusion Bonded to Form Structures.
- 1.8 m Length Chosen so Fill Time ≈ Attenuation Time ≈ 100 ns.
- Operated at 45 °C with Water Cooling. RF Losses are about 3 kW/m.
- RF Ramped During Fill to Compensate Beam Loading (21%). In Steady State, 50% of the 170 MW Input Power goes into the Beam.

Two RDDS Cells

31st International Conference on HEP

July 24-31, 2002

Example of Long-Range Transverse Wakefield for H60VG3 with Manifold Damping and Three-Fold Interleaving (Red = Subsequent Bunch Locations)

Pitting on the T53VG3R Input Coupler Iris

Rough Estimate of Number of Pits on Iris = 30,000 Number of Coupler Breakdown Events = 1500 ♥ Number of Pits per Breakdown = 20

Breakdown through Electron Emission and Damage

31st International Conference on HEP

T53VG3RA Input Coupler

July 24-31, 2002

PIE-shaped Slot — rounded cell

July 24-31, 2002

Overall Layout

CLIC Test Facility CTF3

SICA Accelerating Structure

Conceptual view of the SICA accelerating structure

Machined disc of the 3 GHz version of the SICA structure

A quarter geometry of the C-PETS with 12 damping slots and SiC loads

Future Technologies

Lasers, Plasmas, Wakefields Goal for Gradients ~ 1 GV/m Compare with the CLIC 3 TeV goals

Gradient	172/150 MV/m
Ν	4 x 10 ⁹
Bunches/sec	15400
$\gamma \epsilon_{\rm x} / \gamma \epsilon_{\rm v}$	0.7/0.02 x 10 ⁻⁶ m.rad
$\mathbf{B_x}^{T} \mathbf{B_v}^{T}$	8/0.15 mm
σ _x σ _v	43/1 nm
δ _B	30.5%
Upsilon	8.3
AC to RF EFF.	40%
Luminosity	0 ³⁵ cm ⁻² sec ⁻¹

Challenges for Future Technologies:

- •Can staging be achieved?
- •Can similar N, bunches/sec be achieved?
- •Can low emittances survive acceleration process?
- •Can accelerating efficiency be achieved?

Ground Motion Models

3 models used for simulations

A - quiet B - medium C - noisy

Based on data from various accelerators

Machine Tuning Simulations Sequence

- 1. Start with a perfect machine and calculate luminosity
- 2. Introduce errors likely to exist upon installation
- 3. Make corrections using Beam Based Alignment (BBA) and Beam Bumps, and tuning of the longitudinal phase space (bunch length, energy spread, energy)
- 4. Now include magnet jitter and ground motion

assumptions along with energy jitter and changing klystron populations

- 5. Verify that beam-based feedbacks stabilize the beam and maintain luminosity over short-term
- 6. Repeat BBA and emittance tuning verify that BBA and tuning algorithms converge in the presence of jitter (try to model realistic diagnostic performance)
- 7. Unfortunately, steps 3 and 5 will take several months to complete; hence steps 4 and 6 must proceed in parallel on the basis of guessed assumptions for the effectiveness of the BBA and beam tuning

July 24-31, 2002

TESLA the region to the north-west of the DESY-Laboratory

July 24-31, 2002

Japanese Candidate Sites Close to existing National Science Centers

Illinois N-S Site

31st International Conference on HEP

July 24-31, 2002

NLC representative sites in CA *(deep tunnel site 127 & cut and cover site135)*

Second ILC-TRC Report Future Milestones

July 30, 2002	Interim report to ICFA in Amsterdam
September 9-12, 2002	Fourth review (DESY)
October 9, 2002	Report to ICFA at CERN
December 2002	Publication of main report
Early 2003	Possible publication of Addenda

Acknowledgments

The author wishes to thank the entire International Linear Collider Technical Review Committee for many of the illustrations shown in this talk. He is especially grateful to R. Brinkmann, R. Miller, T. Raubenheimer, A. Seryi, S. Tantawi, P. Tenenbaum, J. Wang and A. Wolski for enlightening discussions.