Particle Astrophysics

Cosmic rays Gamma-ray astronomy Neutrino astronomy

ICHEP 2002, Amsterdam, July 31, 2002 Thomas K. Gaisser

Multi-messenger astronomy

- Protons, γ-rays, ν, [gravitational waves] as probes of the high-energy universe
 - Protons: directions scrambled by magnetic fields
 - Photons: straight-line propagation but
 - reprocessed in the sources
 - extragalactic backgrounds absorb Eγ > TeV
 - Neutrinos: straight-line propagation, unabsorbed, but difficult to detect

Energetics of cosmic rays

- Energy density: ρ_E
 ~ 10⁻¹² erg/cm³ ~ B² / 8π
- Power needed: ρ_E / τ_{esc} galactic $\tau_{esc} \sim 3 \times 10^6$ yrs Power ~ 10⁻²⁶ erg/cm³s
- Supernova power: 10⁵¹ erg per SN
 ~3 SN per century in disk
 ~ 10⁻²⁵ erg/cm³s
- SN model of galactic CR Power spectrum from shock acceleration, propagation

Spectral Energy Distribution (linear inset → most E < 100 GeV)

ICHEP 2002, Amsterdam, July 31, 2002

Problems of simplest SNR shock model

- Expected shape of spectrum:
 - Differential index $\alpha \sim 2.1$ for diffusive shock acceleration
 - $\alpha_{\text{observed}} \sim 2.7$; $\alpha_{\text{source}} \sim 2.1$; $\Delta \alpha \sim 0.6 \rightarrow \tau_{\text{esc}}(\text{E}) \sim \text{E}^{-0.6}$
 - c $\tau_{esc} \rightarrow T_{disk} \sim 100 \text{ TeV}$
 - → Isotropy problem
- $E_{max} \sim \beta_{shock} Ze \times B \times R_{shock}$
 - → E_{max} ~ Z x 100 TeV with exponential cutoff of each component
 - But spectrum continues to higher energy:
 - $\rightarrow E_{max}$ problem

- Expect p + gas → γ (TeV) for certain SNR
 - Need nearby target as shown in picture from *Nature* (April 02)
 - Interpretation uncertain; see
 - Enomoto et al., Aharonian (Nature); Reimer et al., astro-ph/0205256

- \rightarrow Problem of elusive $\pi^0 \gamma$ -rays

ICHEP 2002, Amsterdam, July 31, 2002

Spectrum normalizes atmospheric v

- GeV to TeV important for atmospheric v
- Good agreement < 100 GeV
 AMS, BESS
- Lack of TeV data; new expts:
 - Magnetic spectrometers:
 - PAMELA (2003)
 - AMS on Space Station (2005)
- Meanwhile, new μ-flux measurements E_u > 100 GeV
 - Timmermans' talk on L3+C
 - Somewhat below previous measurements

ICHEP 2002, Amsterdam, July 31, 2002

Thomas K. Gaisser

TKG & Honda, hep-ph/0203272

Knee of spectrum

- Differential spectral index changes at ~ 3 x 10¹⁵eV
 - $\alpha = 2.7 \rightarrow \alpha = 3.0$
 - Continues to $3 \times 10^{18} \text{ eV}$
 - Expect exp{-E / Z E_{max}}
 cutoff for each Z
- Fine-tuning problem:
 - to match smoothly a new source with a steeper spectrum (Axford)
 - How serious is this?

Speculation on the knee

1 component: α = 2.7, E_{max} = Z x 30 TeV;

or $Emax = Z \times 1 PeV$

ICHEP 2002, Amsterdam, July 31, 2002

Thomas K. Gaisser

K-H Kampert et al., astro-ph/0204205

Transition to extragalactic origin?

ICHEP 2002, Amsterdam, July 31, 2002

• Ankle

new population of particles?

- Suggestive evidence:
 - hardening of spectrum
 - change of composition
- Measurements:
 - Energy
 - Depth of maximum (X_{max})

– N $_{\mu}$ / N $_{e}$

fluorescence detector - Auger realizes Air shower detectors this concept (talk of G. Matthiae) 長坂ブランチ Hi-Res stereo fluorescence detector (D. Bergman's talk) 狙野ブランチ Fly's Eye 観測所 須玉ブランチ 3km AGASA (Akeno, Japan) 100 km² ground array

Sketch of ground array with

ICHEP 2002, Amsterdam, July 31, 2002

Measuring the energy of UHECR

- Ground array samples
 shower front
 - Well-defined acceptance
 - Simulation relates observed ground parameter to energy
- Fluorescence technique tracks shower profile
 - Track-length integral gives calorimetric measure of energy
 - X_{max} sensitive to primary mass: $X_{max} \sim \Lambda \ln(E_0/A)$

ICHEP 2002, Amsterdam, July 31, 2002

Xmax vs Energy

- Protons penetrate deeper into atmosphere
- Heavy nuclei develop higher up
- Plot shows a summary of data over 5 decades
- Several techniques
- Some dependence on models of hadronic interactions (R. Engel's talk)

Xmax vs Energy

- Lines indicate trend of data:
- Light to heavy above the "knee" (~10¹⁶ → 10¹⁷ eV)
- Heavy to light at the "ankle" (~10¹⁸ → 10¹⁹ eV)
- AGASA looks at µ/e ratio in shower front and sees no evidence for change of composition at the ankle

Energy of extragalactic component

- Energy density:
 - ρ_{CR} > ~ 2 x 10⁻¹⁹ erg/cm³
 - Estimate requires extrapolation of UHECR to low energy
- Power required
 - > ρ_{CR} /10¹⁰ yr ~
 - 1.3 x 10³⁷ erg/Mpc³/s
 - 10⁻⁷ AGN/Mpc³
 - Need >10⁴⁴ erg/s/AGN
 - 1000 GRB/yr
 - Need >3 x 10⁵² erg/GRB

Assume extragalactic component with hard spectrum and GZK cutoff ~5 x 10¹⁹ eV. $\alpha = 2.0$: ideal shock acceleration $\alpha = 2.25$: expected for relativistic shocks Integrate to estimate observed energy density

Highest energy cosmic rays

- GZK cutoff?
 - Expected from energy loss in 2.7° background for cosmological sources

Attenuation length in microwave background

ICHEP 2002, Amsterdam, July 31, 2002

Compare AGASA & HiRes Ground array Fluorescence detector

- Exposure (10³ km² yr sr):
 - AGASA: 1.3
 - HiRes (mono): 2.2
- Number events >10²⁰
 - AGASA: 10 (+2?)
 - HiRes (mono): 2?
 - Both detectors have energy-dependent acceptance (different)
 - Need more statistics and stereo results

1019

Energy [eV]

Models of UHECR

(Incomplete list--Refs. in written version)

- Bottom up (acceleration)
 - Jets of AGN
 - External
 - Internal (PIC models)
 - Accretion shocks in galaxy clusters
 - Galaxy mergers
 - Young SNR
 - Magnetars
- Observed showers either protons (or nuclei)

- GRB fireballs

- Top-down (exotic)
 - Radiation from topological defects
 - *Decays of massive relic particles in Galactic halo
 - Resonant neutrino interactions on relic v's (Zburst)
- Large fraction of γ–showers (especially if local* origin)

If no cutoff, require a significant contribution from nearby sources. Local overdensity of galaxies is insufficient if UHECR source distribution follows distribution of galaxies.

ICHEP 2002, Amsterdam, July 31, 2002

Biggest event

- Comparison to
 - Proton showers
 - Iron showers
 - $-\gamma$ showers

Horizontal air showers

- Most of shower absorbed, mostly muons survive to the ground
- \bullet Heavy primaries produce more μ
- Incident photons produce few $\boldsymbol{\mu}$
- Analysis of vintage (aged ~25 yrs) data from Haverah Park array possible with modern simulation tools
- Results place interesting limits limits on Top-Down models:
- UHE events from decaying, massive relics accumulated in the Galactic halo would be mostly photon-induced showers. Such models are therefore disfavored
 Similar limit on γ/p from AGASA

ICHEP 2002, Amsterdam, July 31, 2002

Auger hybrid event

"Engineering Array": SD with 40 modules ~ 100 km² viewed by fluorescence detector.
Now operating in Argentina.
100 more tanks running in 2003.

Nearly horizontal event of 40-station engineering array

Fluorescence detector view

ICHEP 2002, Amsterdam, July 31, 2002

Active Galaxies: Jets

Radio Galaxy 3C296 (AUI, NRAO). --Jets extend beyond host galaxy.

Drawing of AGN core

ICHEP 2002, Amsierdam, July 31, 2002

Egret blazars

- •Blazars are AGN with jet illuminating observer.
- •Two-component spectra interpreted as synchrotron radiation (low energy) plus inverse Compton generated by high-energy electrons accelerated to high energy in relativistic jets ($\Gamma \sim 10$).
- •A few nearby blazars have spectra extending to > TeV observed by ground-based Imaging Atmospheric Cherenkov Telescopes (IACT).

ICHEP 2002, Amsterdam, July 31, 2002

AGN Mulitwavelength observations

- SSC, EC, PIC models
 - 1st peak from electron synchrotron radiation
 - 2nd peak model-dependent; predict v flux if PIC
 - Interpretation complex:
 - Sources variable
 - Locations of peaks depend on source-- factor of >100 range of peak energy
 - New detectors (GLAST, HESS, MAGIC, VERITAS) will greatly expand number, variety of sources

Example of Mrk421 with new (preliminary) result from STACEE ~100 GeV

Solar arrays for γ -ray astronomy explore down to ~100 GeV:

CELESTE, STACEE in operation

Gaisser

TeV y Blazars

• Five detected

Mrk 421 (Z = 0.031) Mrk 501 (Z = 0.034) 1ES2344+514 (Z = 0.044) 1H1426+428 (Z = 0.129)

1ES1959+650 (Z = 0.048)*

* Whipple, IAU Circular 17 May 2002

 E_{max} vs Z probes era of galaxy-formation through IR background

Blazar spectra at high energy

- Mrk 421 & Mrk 501, both at z ~ .03
 - Cutoffs
 - Intrinsic?
 - Effect of propagation?
 - Variable sources
 - Low intensity softer spectrum
 - Interpretation under debate
 - Need more observations of more sources at various redshifts

HEGRA plots from Aharonian et al. astro-ph/0205499. Different E_{cut} of 421 and 501 suggest cutoffs are intrinsic.

Comparable analysis of Whipple extends to lower energy. Seeing comparable cutoffs, they suggest effect is due to propagation. Krennrich et al., Ap.J. 560 (2002) L45

ICHEP 2002, Amsterdam, July 31, 2002

Sky map from the Milagro detector

Milagro is a compact air shower detector that uses a 60 x 80 m water Cherenkov pool covered and surrounded by air shower detectors.

ICHEP 2002, Amsterdam, July 31, 2002

Detectors for gamma-ray astronomy

Egret 1991-2000

	IACT	Solar arrays	All-sky dets.	Space dets.
	Whipple	STACEE	Tibet ASγ	
Į	CAT	Celeste	ARGO-YBJ	
	Cangaroo II		MILAGRO	
	Hegra*			
(HESS* (2002)			SWIFT (2003)
	MAGIC (2003)			AGILE (03/04)
Í	Cangaroo III *		Glast papers by E. Bloom, L. Latronico	GLAST (2005)
	VERITAS*(2005)			

ICHEP 2002, Amsterdam, July 31, 2002

Presently running

Future

Gamma-ray astronomy present and future

5 sigma, 50 hours, > 10 events EGRET Crab Nebula CELESTE, STACEE GLAST MILAGRO MAGIC ARGO Whipple VERITAS Air shower experiments Cerenkov detectors in operation HEGRA Past experiments HESS Future experiments 10^{2} 10^{3} 10^{1} 10^{4} Photon Energy (GeV)

ICHEP 2002, Amsterdam, July 31, 2002

H.E.S.S.

• First events – June, 2002

ICHEP 2002, Amsterdam, July 31, 2002

Gamma-ray bursts

- Cosmological bursts
 - Studies of afterglows (ROTSE, Beppo-Sax ID) determine Z ~ 1
- Hypernova or coalescing compact objects
 - Relativistic jets ($\Gamma \sim 100$)
 - Acceleration at internal shocks
 - Possible acceleration when jets interact with environment
- Are GRBs sufficiently powerful and numerous to supply the UHECRs?
 - This question currently under debate
- Soft Gamma Repeaters
 - Galactic magnetars, $B \sim 10^{15} G$
 - Satisfy $e\beta cBR > 10^{20} eV$
- SWIFT to be launched in 2003

BATSE GRBs in Galactic Coordinates

Tho

Neutrino Astronomy

- SN1987A, Solar v
- High-energy v astronomy
 - [DUMAND]
 - Baikal, AMANDA
 - Currently running
 - Atmospheric v's detected
 - Limits on point sources, diffuse high-energy v's, WIMPs, monopoles
 - Km3-scale projects getting underway

ICHEP 2002, Amsterdam, July 31, 2002

Development of kilometer-scale v telescopes ... complementary sky-views and techniques

s K. Gaisser

Skymaps and exposure to gamma-ray bursters

BATSE 2706 GRBs B*eppo*-SAX 126 GRBs

ANTARES location: Sources rise and set; partial overlap with South Pole F.O.V.

Plot by Teresa Montaruli is grey-scale image of sky coverage for upward events (black = no coverage, white = full coverage). Applies to E_v < PeV when Earth needed to shield against downward events.

AMANDA location: Sources always at same elevation, a possible advantage for variable sources

Neutrino flavor ID

- $P \rightarrow \pi \rightarrow \nu_{\mu} + \mu \rightarrow e + \nu_{e} + \nu_{\mu}$
 - $v_{\mu}: v_{e}: v_{\tau} \sim 2: 1: 0$ at production
 - oscillations give 1:1:1 at Earth
- $E_V < PeV$
 - v_{μ} : upward μ track
 - v_e , v_τ : cascades
- $E_V > PeV$
 - R_{τ} ~ 50 m / E_{τ} (PeV)
 - $\begin{array}{ll} & & \nu_\tau \text{ gives double bang or "lollipop"} \\ & \text{signature (large cascade preceded or followed by a long, "cool" track)} \end{array}$

ICHEP 2002, Amsterdam, July 31, 2002

ν Propagation in the Earth

- Lower hemisphere 50% opaque for $E_v \sim PeV$
- Regeneration of ν_τ
 - $v_{\tau} \rightarrow \tau \rightarrow v \rightarrow$ cascade:
 - Look for excess of upward cascades between 0.1 and 10 PeV
- For E_v > PeV can use downward neutrinos as well as upward

ICHEP 2002, Amsterdam, July 31, 2002

Expected signals in km³

- Possible point sources:
 - Galactic
 - SNR 0 10 events / yr
 - μ -quasars 0.1 5 / burst
 - ~ 100 / yr, steady source
 - Extra-galactic
 - AGN jets 0-100 / yr
 - GRB precursor (~100 s)
 - ~ 1000 bursts / yr
 - ~ 0.2 events / burst
 - GRB jet after breakout
 - smaller mean signal / burst
 - Nearby bursts give larger signal in both cases

Diffuse (unresolved) sources--signature:

Rates of neutrino-induced muons in IceCube

- hard spectrum
- charm background uncertain

ICHEP 2002, Amsterdam, July 31, 2002

Proposed detectors for $E_v \sim EeV$

- Air shower arrays
 - Signature: Horizontal EAS
 - V_{eff} ~ 10 m.w.e. x area
 - e.g. 30 Gt for Auger
 - (Acceptance ~30 x larger for v_{τ} in Auger)
 - >1000 Gt for EUSO, OWL
- Radio detectors
 - RICE (antennas in S.P. ice)
 - ANITA (antennas on longduration Antarctic balloon)
 - SALSA (...in salt domes)
 - GLUE (Goldstone antenna search for v interact in moon)

Note: despite larger V_{eff} , rates may be comparable or smaller than in Km³ detectors with lower $E_{threshold}$ by an amount depending on source spectrum

ICHEP 2002, Amsterdam, July 31, 2002

Summary

- Need more statistics and cross-calibration for ultra-high energy cosmic rays
- Expect another leap in g-astronomy with GLAST and new ground telescope arrays
- Kilometer-scale neutrino telescopes to open new window on energetic Universe
- Many active and new experiments in this rapidly developing field -- stay tuned!

Diffuse galactic secondaries

p + gas $\rightarrow \pi^0, \pi^{+/-},$ antiprotons

- $\pi^0 \rightarrow \gamma \gamma \quad [\pi^{+/-} \rightarrow \nu]$
- Hard γ-spectrum suggests some contribution from collisions at sources

Thomas K. Gaisser

varying with solar cycle

Lessons from the heliosphere

- ACE energetic particle fluences:
- Smooth spectrum
 - composed of several distinct components:
 - Most shock accelerated
 - Many events with different shapes contribute at low energy (< 1 MeV)
 - Few events produce ~10 MeV
 - Knee ~ Emax of a few events
 - Ankle at transition from heliospheric to galactic cosmic rays

ICHEP 2002, Amsterdam, July 31, 2002

R.A. Mewaldt *et al.*, A.I.P. Conf. Proc. 598 (2001) 165 Thomas K. Gaisser

Heliospheric cosmic rays

- ACE--Integrated fluences:
 - Many events contribute to low-energy heliospheric cosmic rays;
 - fewer as energy increases.
 - Highest energy (75 MeV/nuc) is dominated by low-energy galactic cosmic rays, and this component is again smooth
- Beginning of a pattern?

R.A. Mewaldt *et al.*, A.I.P. Conf. Thomas K. Gaisser^{Proc. 598} (2001) 165

ICHEP 2002, Amsterdam, July 31, 2002

Reconstruction Handles for neutrino astronomy

	up/down	energy	source direction	time
Atmospheric v_{μ} (calibration beam)	X			
Diffuse v, EHE events	X	X		
Point Sources: AGN,WIMPs	X	X	x	
GRBs	X	X	X	X

ICHEP 2002, Amsterdam, July 31, 2002

Energy resolution

Systematics

- ΔE / E ~20% for ~10^{18} eV
 - By cross-calibrating different detectors
 - By using different models
 - By comparing spectra of different experiments and techniques
- Fluctuations in S_{max}
 - underestimate E if measured at max,
 - overestimate if past max

 $S_{\text{max}}/E_0 \text{ [GeV]}^{-1}$

ICHEP 2002, Amsterdam, July 31, 2002

GRB model

Bahcall & Waxman, hep-ph/0206217

- Assumes E⁻² spectrum at source
- 2.5 x 10⁵³ erg/GRB
- 0.4 x 10³⁷ erg/Mpc³/s
- Evolution like starformation rate
- GZK losses included
- Galactic → extragalactic transition ~ 10¹⁹ eV

AGN model

Berezinsky et al., hep-ph/0204357

- Assumes two-component spectra
 - steep at high energy
- 10³⁹ erg/Mpc³/s
 - note high value
- Evolution, GZK losses
- Compares to AGASA data, cannot explain ~5 events
- Transition to extragalactic at low energy

ICHEP 2002, Amsterdam, July 31, 2002 Thomas K. Gaisser