R&D for future detectors

31st International conference on High Energy Physics Amsterdam 31st July 2002

Silicon based detectors

Vertexing for Linear Collider

Tracking for Linear Collider High radiation environments Micropattern gas detectors Tracking, Calorimetry Calorimetry Jet reconstruction at LC

Photodetectors

LHCb, b factory upgrades HPD, RPCs, Dark Matter searches, Large systems

Silicon Pixel sensors -MAPs, HAPs, CCD, Depfet Silicon drift Lazarus, 3d detectors

MSGC,GEM, Micromegas

Digital calorimeters

HPD, HAPD

Paula Collins, CERN

LEP vs LC by Rembrandt

At LC:

"x sections are tiny"

"No radiation issues"

"Triggerless operation possible" "Modest rates" Why not use a LEP/SLD detector?

LC physics demands Excellent Vertexing (b,c,t) and Tracking ⇒ in a high B field ⇒ with energy flow

Silicon for vertexing @ the LC

required performance				
disentangle complex $e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{q}q\bar{b}\bar{q}q$	Train			Time
discriminate b from c $H \rightarrow b\overline{b}, c\overline{c}, gg, \tau\overline{\tau}$ and from background		LEP 0.2 TeV	NLC/ JLC	TESLA 0.5 TeV
δ (IP) < 5 μm \oplus 10 μm/(p sin ^{3/2} θ)	bunches perTrain	4	190	2820
(best SLD 8 μ m \oplus 33 μ m/(p sin ^{3/2} θ))	Rep rate, Hz	45500	100	5

- Use a silicon based pixel detector
 Confine the e⁺e⁻ background with a
- high solenoidal field
- Keep occupancy reasonable by reading inner layer in 50 µsec

Vertex detector characteristics point resolution 1-5 µm Thickness ~ 0.1 % X₀ 5 layers Inner radius ~ 1.5 cm

Silicon Trends

DEPFET sensors

- $\boldsymbol{\cdot} \text{Thinning possible to 50}\; \mu\text{m}$
- **R&D**: pixel size, power, thinning, speed
- End 2002: 128x128 30 μ mx30 μ m prototypes

Monolithic Active Pixel Sensors (MAPS)

Mimosa	I	II	III	IV	V	VI
Process	0.6 μ m	0.35 μ m	0.25 μ m	0.35 μ m	0.6 µm	0.35 μ m
Epi layer	14 μ m	4.2 μ m	2.3 μ m	0 (!!!)	14 μ m	4.2 μ m
# pixels	64x64x4	64x64x6	128x128x2	64x64x4	1,000,000×7	24x128x ⁶

Irradiation of MIMOSA I & II up to 10¹³ 1 MeV/c neutrons

Gain ⇒ constant

Noise ⇒ constant

Leakage current ⇒ moderate rise

collected charge ⇒ 50-70% of initial value

(smooth decrease after 10^{12} or few x 10^{11})

NIMA 478 (2002) 311-315

CCDs invented in 1970 - widely used in cameras, telescopes etc.

Tracking applications for HEP:

1980-1985	NA32	120 kpixels
1992-1995	SLD	120 Mpixels
1996-1998	SLD upgrade	307 Mpixels
	TESLA	799 Mpixels

~1000 signal electrons are collected by a combination of drift and diffusion over a ~20µm region just below surface

- \bullet Small pixel size 20 x 20 μm
- Possibility of very thin detectors

•Column parallel readout: serial register -> direct bump bonding to chip

CCD R&D for LC requirements

 $x_{o} = 63.3 \pm 0.2$

- Speed up readout
 - ≻ 5 MHz readout -> 50 MHz
 - Reduce clock amplitudes 10V->3V
 - > Build with high resistivity epitaxial material
- Study radiation resistance to LC doses of 100Krad ionising radiation + 5 x 10⁹ neutrons
 - Temperature dependence

CCD ⁵⁵Fe spectrum: 50MHz 3V clocks

Isolated pixel hits

Gauss fit

160

- Minimise material in fiducial volume
 - Highly thinned silicon glued to substrate
 - Unsupported "stretched silicon" option

Layer	Radius (mm)	CCD lxw (mm x mm)	CCD Size (Mpix)	Clock / readout time	Background (Hits/mm²)	Integrated background (kHits/train)
1	15	100 x 13	3.3	50 MHz/50 ms	4.3	761
5	60	125 x 22	6.9	25 MHz/250 ms	0.1	28

Integration into LC design

flavour tagging performance at $\sqrt{s}=91$ GeV

b jets roughly equal SLD performancec jets improved by factor 2-3 in efficiency

Silicon for tracking: Silicon Drift Detectors

- Principle of sideways depletion as for DEPFET sensors
- p⁺ segmentation on both sides of silicon
- Complete depletion of wafer from segmented n⁺ anodes on one side
- !! Drift velocity must be predictable
 - → Temperature control
 - resistivity control
 - Calibration techniques
- SDD fully functioning in STAR SVT since 2001
- 216 wafers, 0.7 m²
- 10 mm in anode direction
- 20 mm in drift direction
- Particle ID

Silicon for tracking: Drift detectors

SDD are a mature technology - attractive for LC

- 5 precise silicon layers to replace TPC
 - 56 m² silicon
- R&D needed:
 - \blacktriangleright Improve resolution to 5 μ m
 - Improve radiation length
 - Improve rad hardness
 - Track stamping possible at nanosecond level
 - χ^2 separation for out-of-time tracks for different drift direction configurations

Silicon for tracking: Large Systems

Whoops...

CDF & D0 are demonstrating the possible

CDF	Layer 00	SVX II	ISL	Totals
Layers	1	5	2	8
Length	0.9 m	0.9 m	1.9 m	
Channels	13824	405504	303104	722432
Modules	48 SS	360 DS	296 DS	704
Readout Length	14.8 cm	14.5 cm	21.5 cm	
Inner Radius	1.35 cm	2.5 cm	20 cm	1.35 cm
Outer Radius	1.65 cm	10.6 cm	28 cm	28 cm
Power	~100 W	1.4 kW	1.0 kW	2.5 kW

A huge system is up and running:

19 micron resolution (before alignment) S/N as expected Silicon participating in trigger Silicon is used for physics!

Irradiation

The LHC environment will be FIERCE

LHC upgrade/VLHC will be WORSE!

 $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

 8×10^8 pp collisions / s

Hadron fluences to 10¹⁵ cm⁻²

Other collider upgrades are hot too e.g. Super Belle/Babar

LHCb vertex detector x 10¹⁴ a) n_{eq}/cm² per year 1.4 $n_{\rm eq}$ / cm²/ year t radius = 0.8cm 1.2 station 7 1.0 0.8 0.6 station n station 25 c) 1.8 3 radius [cm]

Improved semiconductor designs/materials are well worth considering

Irradiation

NIEL allows us to look into the future and predict what will happen in complex environments

(!) Has been known to fail for neutrons/charged hadrons in some cases

Irradiation

Irradiated detectors

Mr. Ramo

00000

I co-invented the electron microscope

> I pioneered microwave technology

I founded TRW

I had a theorem

Irradiation: strips for LHCb

Recovery is temporary - but this can be solved

Irradiation: 3d detectors

00000

Unit cell defined by e.g. hexagonal array of electrodes Maximum drift and depletion distance governed by electrode spacing

- Lower depletion voltages
- Radiation hardness
- Fast response
- > At the price of more complex processing
- Narrow dead regions on edges

3d detectors: characteristics

Am²⁴¹ spectrum

- Low leakage currents
 - Low depletion voltages
- > Gaussian X ray lines
 - Fast charge collection

Performance after irradiation

MPGDs: Micro-Pattern Gas Detectors

high resistiv

100 - 400 un

MPGDs: MicroMegas

Drift electrode

Micromesh gaseous structure G. Charpak, Y. Giomatraris, 1992

- Thin gap || plate structure
 - Good energy resolution
 - > High rate capability
- Conversion space separated from amplification gap by micromesh
- Ion feedback suppressed ∆U~500V -> 50 kV/cm
- Saturation of Townsend coefficient ⇒ stable against gap variations

0.01

Gap(mm)

0.1

gap size

Variation on a theme: MicroCompteurATrous

- Two dimensional interpolating readout Structure
- Large active area with new spacer concept (e.g. Wagner, 2002).

Micromegas

MPGD's for TESLA TPC

- d (1/p_T) = 1.4×10⁻⁴ GeV⁻¹ (barrel)
- Drift time 50 µs ⇒150 bx
- 20 MHz readout

00000

R&D focus: new gas amplification system MGPD readout (GEM/Micromega)

MPGD's for TESLA TPC

- Ion feedback suppressed to 2% level
- Good dE/dx
- + E x B effect reduced to 50 μm
- Gating @ 2cm possible between trains
- Chevron pads compensate low induction signals

Another option: use silicon pixel readout a la "x ray polarimeter"

- Each GEM hole has its own pixel(s)
- GEM gain 1000-3000 + pixel noise (200 e)
 = single electron detection
- 1.7 Gpixels
- A digital TPC limited only by diffusion

MGPDs : Advantages

MPGD's by Albert Cuyp

00000

Watch out for discharges

MPGD's by Albert Cuyp 00000 •Triple GEM solution: ·Reduced spark probability for equal gain x 10 Discharge probability / 00 Single GEM 0.3 Double GEM 2000 4000 3000 Triple GEM 0.25 . 10 Ne/DME (40/60) 0.2

GEM + SGC: Tune the voltages to optimise discharge rate -> factor 100

MPGD's: Ageing

Calorimetry for the LC

- LC physics all about jets:
 - > tth ⇒8 jets
 - > hZ ⇒2l + 2 jets, 4 jets
 - > hhZ ⇒2l + 4 jets, 8 jets

+ SUSY, quark, τ tagging, lepton/hadron id High magnetic field demands compact design Calorimetry at the LC will be demanding

ENERGY FLOW is the name of the game

 $E_{jet} = \Sigma E_{ch} + \Sigma E_{\gamma} + \Sigma E_{neutrals}$ Identification and reconstruction of all eflow objects

Charged tracks from tracking system Photons from ECAL Neutral hadrons from ECAL and HCAL

Calorimetry for the LC

ECAL: silicon-tungsten (Si-W) sampling electromagnetic calorimeter:

00000

• 40 layers, between

0.4 and 1.2X₀ (radiation lengths).

- $24X_0$ total thickness.
 - 32 million channels.
 - $\cdot 1 \times 1 \text{ cm}^2$ pad size
- HCAL: digital calorimeter concept
 - •count 1cm² cells
 - •16 million channels
 - Stainless steel absorber plates
- Readout with RPCs/wire chambers

For hadronic jets, TDR calorimeters give $\Delta E/E = 33\%/\sqrt{E}$

> Distinguishes vvW^+W^- and vvZZfinal states > Higgs $\rightarrow \gamma\gamma$ gives $\sigma_m \sim 2 \text{ GeV}$

00000

The Tower of Babel by Pieter Breugel

ack: G. Charpak 39

mass production, QA, electronics, computing, long time scales (technology, aging), risk factors, mechanics, etc. etc.

Example: Calibration systems Will assume huge importance: from cross check to full integration

CRESSTII: Simultaneous detection of phonons + scintillation light with CaWO4 crystals

Low pressure gas Xe TPC Charge carried by negative ions Readout with MWPC/CCD/MPGD

Detector R&D making a huge impact on the future of HEP

The syndics of the referees guild

Thanks to all people who provided material, including

LC Marty Breidenbach, Keith Riles, Paul Dauncey, Ron Settles Silicon Hans Dijkstra MAPS Marc Winter, Grzegorz Deptuch, Wojtek Dulinski, CCD Chris Damerell DEPFET Marcel Trimpl Johannes Ulrici SDD Rene Bellweid, Vladimir Rykov HAPS Massimo Caccia, Wojtek Kucewicz, Peter Chochula, Peter Rosinsky Irradiation Sherwood Parker, Cinzia da Via, Angela Kok, Mahfazur Rahman, Michael Moll, Mika Huhtinen, William Trischuk, Zheng Li Tevatron Alan Sill MPGD Lev Chekhtman, Yannis Giomataris, David Bouvet, Harry van der Graaf RPC Werner Riegler, Crispin Williams photodetectors Roger Forty, Thierry Gys b factory David Leith, David Hitlin Dark Matter Hans Kraus, Fabrice Feinstein, Harry Nelson Calibration Jim Thomas, Alexei Lebedev Overview Tejinder Virdee, Guy Wilkinson

and not forgetting

the painters of the low countries

From now on backup transparencies

Timing @ the LC

	LEP 0.2 TeV	NLC/JLC	TESLA 0.5 TeV
Train length, µs	0.750	0.265	950
Number of bunches/Train	4	190	2820
Bunch separation, ns	200	1.4	337
Repetition rate, Hz	45500	100	5

 \Rightarrow at TESLA, keep occupancy reasonable by reading out innermost layer in 50 μsec

MPGD: GEM detectors

Gas Electron Multiplier – F. Sauli 1996

F. Sauli, Nucl. Instr. Meth. A386 (1997) 531

- Copper clad kapton foil
 - Perforated by many (~10⁴/cm²) holes
 - ∆U between electrodes creates amplification region inside holes
 - Gain is a property of foil
 - Can cascade several GEMS
 Higher gain
 - Amplification and readout stages are separate
 - Many readout schemes possible, e.g. 3d, Sauli 2002

Hybrid pixels

(some) Tracking applications for HEP:

1995 WA97 0.5 Mpixels

00000

1996

- **75 x 500** μm²
- NA60 0.7 Mpixels ATLAS 100 Mpixels CMS 23 Mpixels ALICE 100 Mpixels BTeV 23 Mpixels

DELPHI 1.2 Mpixels

 $\begin{array}{l} 50 \times 400 \ \mu m^2 \\ 50 \times 400 \ \mu m^2 \\ 150 \times 150 \ \mu m^2 \\ 50 \times 400 \ \mu m^2 \\ 50 \times 400 \ \mu m^2 \end{array}$

330 x 330 μm²

HAPS are fast and tolerant of LC radiation

R&D to cover precision and material issues

R&D programme

 Fine implant pitch + coarse readout pitch
 Use capacative charge sharing between pixels to improve resolution - use good S/N pixel performance

>Prototype results: 100 μm implant + 200 μm readout gives 3 – 10 μm resolution

>Expected to scale with pitch: 20-25 μm prototypes in production in 2002

Test structure with

interleaved pixels

R&D for photodetectors

51

PID is a fundamental requirement for LHCb, BTeV, BaBar, Belle, etc.

- LHCb (e.g.) requirements:
- •Total image surface ~ 2.6 m^2
- •Granularity 2.5 x 2.5 mm^2
- •High fill factor

00000

- •LHC speed readout
- Cross focused image intensifier tube Demagnification x 5

Key R&D effort towards development of suitable photodetector system

DEP 61-pixel HPD prototype

Pixel HPD photodetector developed

Auslesechips

DEPFET readout scheme

- 3 steps for each matrix row
- •Read all signal currents
- •Reset pixel row via clear contacts
- •Read pedestal currents

R&D issues

- •Mimimise pixel size
- Thin from backside
- Minimise power consumption
- •Speed up readout cycle

R&D steps

1997: 2x2 pixel matrix 2000: 64x64 matrix End 2002: 128x128 30µmx30µm prototype

53

Influence of Carbon and Oxygen concentration

Compared to standard silicon:

00000

- High Carbon ⇒ less radiation tolerant
- High Oxygen ⇒ more radiation tolerant

M Moll

Oxygen and standard silicon - Particle dependence -

- Strong improvement for pions and protons
 - Almost no improvement for neutrons

Warning: Variation of "standard material"

Strong variation of standard silicon

00000

Reproducible results for oxygenated silicon

Michael Moll - CERN EP-TAI-SD Seminar - 14.2.2001 - 26 -

MPGDs: micropixels

Towards true gaseous pixel detectors

- Micro-dot chamber (Biagi, 1993)
- Micro-pin structure (Rehak, 1999)
- Micro-pixel chamber (μ-PIC)
 (Ochi *et al, 2001)* 3 x 3 cm device: Pitch 400 μm

Anode thickness 50 μ m

5 days continuous operation without discharge at gain=10³

R&D for LHCb RICH

PID is a fundamental requirement for LHCb

- LHCb requirements:
- •Total image surface ~ 2.6 m^2
- •Granularity $2.5 \times 2.5 \text{ mm}^2$
- •High fill factor
- •LHC speed readout

Key R&D effort towards development of suitable photodetector system

3d Sensors: Speed

3D detectors: Excavating the holes

3D detectors: Excavating the holes				
Dry Etching	Laser Drilling	Electrochemical etching		
250043 20KV X408************************************	GaRE# GaRE# GaRE# GaRE# GaRE# GaRE# GaRE# GaRE# GaRE# GaRE# GaRE# GaRE# GaRE# GaRE#	325 025 1 3KM 5.04n		
Standard photolithography process	 Any material No photolithography 	≻No sidewall damage		
≻Sidewall damage ≻Si and GaAs only	 Slow process for big arrays Sidewall damage Tapering Repeatability 	≻Si only (GaAs and SiC?) ≻Complex photolithography		
1μm / min .	1 hole / 3-5sec.	0.6µm / min.		
Hole depth/diameter ~ 26	Hole depth/diameter: ~ 40 (but)	Hole depth/diameter: ~ 25		

Discovery: 1998 Application: 2001!

Requirements:

- determine primary vertex
- tracking in the beam (p ... Pb)
 - high dose ~Grad per day
 - fast readout (beam intensity)

Solution:

- Lazarus effect (RD39, '98)
 - cryogenic operation
 - · CCE restored

Detector:

- single sided Si strip
- 50 μ m pitch, 24 strips
- cryogenic operation ~130 K
 - steel cryostat, LN
 - tens of Grad !
- 2 sensors = 1 space point

3D detectors: Excavating the holes

3D detectors: Excavating the holes				
Dry Etching	Laser Drilling	Electrochemical etching		
250043 20KV X400 350 50KV X660 490 5	Gaast Gaast Doodd arv 4460***********************************	325825 1814 5:0in		
photolithography process	 No photolithography 	≻No sidewall damage		
≻Sidewall damage ≻Si and GaAs only	 Slow process for big arrays Sidewall damage Tapering Repeatability 	≻Si only (GaAs and SiC?) ≻Complex photolithography		
1μm / min .	1 hole / 3-5sec.	0.6µm / min.		
Hole depth/diameter ~ 26	Hole depth/diameter: ~ 40 (but)	Hole depth/diameter: ~ 25		

Irradiation

- Other collider upgrades are hot too
 - e.g. Super Belle/Babar
 L = 10³⁶ cm⁻² s⁻¹

Dose ~ 5-10 MRad

- Even an LC is enough to fry an SLD
- LHC detectors will be upgraded where possible
 - LHCb vertex detector
 - Pixel layers of GPDs

8000

 Improved semiconductor designs/materials are well worth considering

Irradiation: alternative materials

Defect Engineering

Oxygen enriched siliconOxygen dimer in silicon

New Sensor Materials

- ≻Silicon Carbide
- >Amorphous silicon
- Compound semiconductors
- Diamond

Diamond pixels

Latest results: $\epsilon {\sim} 94\%,\,\sigma {\sim} 30~\mu m$ For 125 x 125 μm pixels

Efficiency

Resolution

for CMS

for ATLAS

MPGDs: Micro Strip Gas Chamber

Proposed by Oed, Bellazini, Udo (1998-89)

MSGC: mature technology

- S/N=31 (98% hit efficiency for CMS)
- Resolution 35 μ m

00000

- No aging for an "LHC lifetime"
- Robust for broken strips

HEP applications

- HERA-B
 - 184 GEM-MSGC ~30*30 cm
- > HERMES
 - 48 MSGC 14*14 cm

Silicon for tracking: Drift detectors

- Principle of sideways depletion as for DEPFET sensor.
- p⁺ segmentation on both sides of silicon
- Complete depletion of wafer from segmented n⁺ anodes on one side

- Reduction of channels vs pixel detectors
- Multi track capability
- dE/dx capability

00000

Small anode capacitance

- Electrons drift along potential trough in detector mid plane skewed towards anodes at the end
- X coordinate measured with drift time (~8 μ m/ns)
- Y coordinate measured from anode c.o.g. → Drift velocity must be predictable
 - - Temperature control
 - → resistivity control
 - Calibration techniques \rightarrow

RPC development

Resistive Plate Chamber: Parallel plate chamber with resistive electrodes Used for TOF, Trigger, Tracker Streamer mode ⇔Avalanche mode

Rate capability ↑ as amplitude ↓
Lower HV hits time resolution
Small signal amplitude: noise, x talk issues

Big worldwide activity Plenty of accumulated experience

Trigger-tracker mode 300 m² L3 ATLAS ?? m² 2000 m² BaBar CMS ?? m² BELLE 2200 m² LHCb $?? m^2$ ALICE 144 m² TOF mode ALICE 144 m^2 NA49 $0.5 \, {\rm m}^2$ HARP 8 m² 60 m² STAR

•Multigap Resistive Plate Chamber : good time resolution

00000

- SDD fully functioning in STAR SVT since 2001
- 216 wafers, 0.7 m²
- 10 mm in anode direction
- 20 mm in drift direction
- Particle ID

5000

246

44.2

44.0

380

2.54

Copper Mylar Ability to finely segment: O(1cm²) Works in magnetic field Fits in gap of < 8 mm Efficient (>95%) Reliable Affordable Glass/Bakelite Gas Graphite All requirements met by RPCs Analog 10 GeV π 's Digital Energy (Cluster NHits (Cluster NHits (Cluster) Energy (Cluster) entries 5000 entries : Energy Nhits 500mean 8.87 mean Eflow driven simulations will 1.83 rms rms : 1.55 min : min · max : 16.1 max : study detector parameters e.g. Gaussian Gaussian amplitude : 477±8 amplitude : 446±8 mean: 8.96±0.02 mean 249±0.6 Transverse segmentation sigma : 1.63±0.02 sigma : 39.1±0.4 1.95 •Cell depth absorber density 160-140-120-100-80-80-40-20-150 ·Layer geometry 100

•COMPASS: fixed targed experiment at the CERN SPS: •measure gluon spin contribution to nucleon spin

- Compass requirements matched to MPGD performance
 - High rate capability ~100 kHz per strip
 - Good spatial resolution
 - Large active area
 - No aging/discharges
- Compass is largest MGPD application
 - > 12 planes, 40 x 40 cm²
 - \succ Spatial resolution ~ 70 μ m
 - \succ Time resolution ~ 10 ns
 - 0.45% radiation length

•PHYSICS DATA WITH FULL DETECTOR SINCE JUNE 24 2002 71

Experiments using silicon strip detectors

Some figures of merit

Impact parameter resolution, combination of two contributions:

- single hit precision and lever arm, VXD3: 3.8 μ m
- multiple scattering: size of beam-pipe, amount of material.

DELPHI R_{pipe}=56mm: $\sigma_{d_0} = \sqrt{28 \bigoplus 71/(p \times sin^{3/2}\theta)} \mu m$

SLD=VXD2 R_{pipe}=25mm: $\sigma_{d_0} = \sqrt{11 \bigoplus 70/(p \times sin^{3/2}\theta)} \mu m$ SLD96=VXD3 R_{pipe}=23mm: $\sigma_{d_0} = \sqrt{8 \bigoplus 33/(p \times sin^{3/2}\theta)} \mu m$

4. Liquid Argon imaging TPC

- * ICARUS: mature technique, demonstrated up to 15 ton prototype
- * Features provided:

→Detects: μ⁺, μ⁻, e, NC, [τ]

- → Fully homogeneous, continuous, precise tracking device with high resolution dE/dx measurement and full sampling electromagnetic and hadronic calorimetry
- Excellent e identification/measurement and e/hadron separation
- → Very good hadronic energy resolution

* 600 ton prototype construction very advanced

- → After the foreseen series of technical tests to be performed in Pavia within the summer 2001, the T600 module will be ready to be transported into the LNGS tunnel
- * Disadvantages:
 - → Muon charge discrimination: target cannot be easily magnetized (but...)
 - → Rely on *down-stream muon spectrometer* (low threshold since dE/dx ≈ 240 MeV/m)
 Idea first implemented in the ICANOE proposal

Rubbia (II)

Liquid Argon technology

The LAr TPC technique is based on the fact that ionization electrons can drift over large distances (meters) in a volume of purified liquid Argon under a strong electric field. If a proper readout system is realized (i.e. a set of fine pitch wire grids) it is possible to realize a massive "electronic bubble chamber", with superb 3-D imaging.

Liquid Argon imaging on large scales

