Structure Function Results from ZEUS

Alexander Kappes Universität Bonn for the ZEUS Collaboration

31st International Conference on High Energy Physics 24–31 July 2002, Amsterdam

Contents

Deep inelastic ep scattering at HERA Inclusive $\phi(1020)$ -meson production in DIS F_2 from initial-state radiative events High- Q^2 NC cross sections from e^-p DIS High- Q^2 CC cross sections from e^-p DIS NLO QCD analysis of data on DIS

Deep inelastic ep scattering at HERA

Alexander Kappes Universität Bonn

2

ICHEP 2002 24–31 July, Amsterdam

Inclusive $\phi(1020)$ -meson production in DIS

- ϕ is produced
 - directly from s quarks in the proton (a)
 - indirectly from s quarks produced via BGF (b), hadronization (c) . . .
- Generally, the direct process is swamped by indirect processes
- Define $x_p(\phi) = 2p(\phi)/Q$ with $p(\phi) = \phi$ momentum in Breit frame

for direct ϕ production $x_p \sim 1$

 \Rightarrow at high x_p , ϕ cross section sensitive to *s*-quark content of proton

indirect

indirect

Inclusive $\phi(1020)$ -meson production in DIS

- **Data set:** 45.0 pb⁻¹ e⁺p (1995–1997)
- Kinematic range: $10 < Q^2 < 100 \text{ GeV}^2$, $2 \cdot 10^{-4} < x < 10^{-2}$

F_2 from initial-state radiative events

- Acceptance of main detector for scattered electron limited to $\theta^\star\gtrsim4^\circ\Rightarrow Q^2\gtrsim2\,{\rm GeV^2}$
- F_2 at lower Q^2 measured by
 - shifting the IP up the lepton beam (SVX)
 - using dedicated small-angle detector (BPC)
 - lowering CMS energy (ISR analysis)

ISR analysis:

- Select events where a γ was radiated from the incoming electron (ISR γ)
 - $\Rightarrow \sqrt{s}$ lowered by factor $(E_e E_\gamma)/E_e$ $\Rightarrow e^{\pm}$ with low Q^2 scatter into main detector
- Fills gap in F_2 coverage around $Q^2 = 1 \text{ GeV}^2$

F_2 from initial-state radiative events

- **Data set:** 3.8 pb⁻¹ e⁺p (1996)
- Kin. Range: $0.3 < Q^2 < 22 \text{ GeV}^2$ $1 \cdot 10^{-5} < x < 3 \cdot 10^{-2}$

- ISR analysis extends covered region around $Q^2 = 1.3 \text{ GeV}^2$ to higher x
- Good agreement between ISR and other analyses in overlap region
- Data well described by theory and fit
- ISR events well understood
 - \Rightarrow Direct measurement of F_L possible in the future

High- Q^2 NC cross sections from e^-p DIS

- Electromagnetic interactions are invariant under P and C $\Rightarrow \sigma^{NC}(e^-p) \approx \sigma^{NC}(e^+p)$ for $Q^2 \ll M_Z^2$ (γ -only exchange)
- Weak interactions do not preserve P and C but $\sim CP$ $\Rightarrow \sigma^{NC}(e^-p) > \sigma^{NC}(e^+p)$ for $Q^2 \gtrsim M_Z^2$ $(|\gamma + Z|$ exchange)
- Parity violating terms of $\sigma^{NC}(e^{\pm}p)$ are combined in structure function xF_3 , whereas F_2 is invariant under P

Comparison of e^-p and e^+p cross sections provides direct test of the electroweak sector of the SM

High- Q^2 NC cross sections from e^-p DIS

High- Q^2 NC cross sections from e^-p DIS

ZEUS

24–31 July, Amsterdam

Universität Bonn

High- Q^2 NC — Extraction of xF_3

High- Q^2 CC cross sections from e^-p DIS

• Charged current reactions only sensitive to specific quark flavors:

 e^-p : u, c, \overline{d} , \overline{s} $(e^+p$: \overline{u} , \overline{c} , d, s)

- $\bullet~W$ only couples to left-handed fermions and right-handed antifermions
 - $\Rightarrow e^-q$ angular distributions flat $e^-\overline{q}$ angular distributions show $(1-y)^2$ behavior
- pure weak interaction \Rightarrow CC cross section directly depending on M_W

$$\frac{d\sigma}{dQ^2} \propto \frac{M_W^4}{\left(Q^2 + M_W^2\right)^2}$$

Measuring CC cross sections

- yields information about flavor-content of proton
- can be used to determine M_W in space-like region

High- Q^2 CC cross sections from e^-p DIS

- **Data set:** 16.4 pb⁻¹ e⁻p (1998–99)
- Kin. Range: $280 < Q^2 < 30000 \text{ GeV}^2$ 0.015 < x < 0.42

- At high x cross section is dominated by u (valence) quarks
 ⇒ direct measurement of u quark PDF
- $(\overline{d} + \overline{s})$ sea is suppressed towards low x due to helicity structure of reaction

High- Q^2 CC cross sections from e^-p — M_W fit

• LO fit to $d\sigma/dQ^2$ distribution:

$$\frac{d\sigma}{dQ^2} \propto \frac{M_W^4}{\left(Q^2 + M_W^2\right)^2}$$

• $G_F = 1.166 \cdot 10^{-5} \, \text{GeV}^{-2}$

Fit results:

- $M_W = 80.3 \pm 2.1 \text{ (stat)} \pm 1.2 \text{ (sys)} \pm 1 \text{ (PDF) GeV}$ $(M_W = 81.4 \begin{array}{c} +2.7 \\ -2.6 \end{array} \begin{array}{c} +2.0 \\ -2.0 \end{array} \begin{array}{c} +3.3 \\ -3.0 \end{array} \text{GeV from } e^+p)$
- In agreement with world average value $M_W = (80.419 \pm 0.056) \text{ GeV}$
- Measurement in space-like region at HERA complementary to those in the time-like region at LEP and Tevatron

NLO QCD analysis of data on DIS

Description of fit:

- Global NLO QCD fit to ZEUS (until 1997) and fixed-target data (BCDMS, NMC, E665, CCFR)
- Full information on point-to-point correlation of systematic uncertainties used
- Kinematic range covered by data points: $2.5 < Q^2 < 30000 \, {\rm GeV^2}, \ 6.3 \cdot 10^{-5} < x < 0.65$
- Fit yields excellent description of data down to $Q^2 \approx 0.8 \, {\rm GeV}^2$

24–31 July, Amsterdam

NLO QCD analysis of data on DIS

- Fixed-target data constrain
 - valence distribution,
 - flavor composition of sea
 - quark distribution at high \boldsymbol{x}
- New precise ZEUS data yields information on
 - gluon distribution
 - quark densities at low \boldsymbol{x}
 - $\alpha_s(M_Z)$ (fit yields $\alpha_s = 0.1166 \pm 0.0053$)
- Size of error band dominated by correlated systematics
- ZEUS fit compatible with MRST2001 and CTEQ6M

NLO QCD analysis of data on DIS

Summary (I)

- Cross section measurements of inclusive ϕ production in DIS (ICHEP 850) yield $\sigma(e^+p \rightarrow e^+\phi p) = 0.506 \pm 0.021(\text{stat})^{+0.006}_{-0.003}(\text{sys}) \text{ nb}$
- ZEUS data prefer models with strange proton content
- Measurement of F_2 from initial-state radiative events (ICHEP 771) fills gap in coverage of kinematic plane around $Q^2 = 1 \text{ GeV}^2$ to higher x
- ISR data in good agreement with "standard" analyses in overlap region
- ISR data allow a first direct measurement of F_L in the future
- Comparing high- Q^2 NC cross sections from e^-p DIS (ICHEP 766) with those from e^+p shows effects of weak interaction via Z exchange
- e^-p data in good agreement with predictions from EW theory and pQCD
- First ZEUS measurement of $xF_3 \neq 0$

Summary (II)

- Measurement of high- Q^2 CC cross sections from e^-p DIS (ICHEP 763) in good agreement with predictions from electroweak theory and QCD
- M_W fit to $d\sigma/dQ^2$ in the space-like region yields $M_W = 80.3 \pm 2.1 \pm 1.2 \pm 1 \text{ GeV}$
- The NLO QCD analysis of data on DIS (ICHEP 765) uses both ZEUS and fixed-target results and takes full point-to-point systematic error correlations into account
- ZEUS fit compatible with MRST2001 and CTEQ6M
- Rapid rise of F_2 in low-x, low- Q^2 region not completely caused by gluons
- ZEUS data (1994–2000) alone precise enough to yield similar uncertainties on valence PDFs as the standard fit with fixed-target data

Recent precision data from ZEUS complete coverage of a large kinematic-plane area (6 orders of magnitude in x and Q^2) and yield xF_3 . All ZEUS results are fitted consistently by NLO QCD and yield precise PDFs.