

Photon and electron structure from e⁺e⁻

Richard Nisius

MPI Munich nisius @mppmu.mpg.de

 \mathbb{I} F_2^{γ} from ALEPH

 $\stackrel{\hbox{\scriptsize Yes}}{=} F^\gamma_{2,\mathbf{c}}$ from OPAL

Electron structure function from DELPHI

Electron structure function from OPAL

 α_s from fit to F_2^{γ} data from Albino et. al.

A glance at the new developments in 17 minutes

- Introduction
- Experimental investigations
 - 1) News on F_2^{γ}
 - 2) News on $F_{2,c}^{\gamma}$
 - 3) What can we learn from the electron structure function?
- Theoretical interpretation
 - 1) The strong coupling constant α_s
- Where do we go from here?
- Conclusions and outlook

Introduction to deep-inelastic electron-photon scattering

The 'history' of photon structure function measurements

Date	Event
1973	Investigation of two-photon processes in QPM by Walsh and Zerwas
1977	The LO asymptotic behavior of $F_2^\gamma \propto 1/lpha_s$ was discovered by Witten
1979	Calculation of NLO corrections by Bardeen and Buras
1981	The first measurement of F_2^γ by PLUTO
1986	The first extraction of Λ from F_2^γ data
1990	Start of F_2^{γ} measurements at TRISTAN
1994	Start of F_2^{γ} measurements at LEP
2002	The final LEP2 results start getting published
2002	NLO extraction of $lpha_s$ based on a large set of data by Albino et. al
2011	First measurement of F_2^γ at a future Linear Collider

The measurement of F_2^γ at high Q^2

 $F_2^\gamma(x)$ at high Q^2

- $F_2^{\gamma}(x)$ is very flat
- The measurements are statistics limited
- The QCD predictions are very QPM like

The evolution of F_2^{γ} with Q^2

- Big improvement in precision at medium Q²
- \bullet Extension up to 780 ${\rm GeV^2}$

Needs Aleph and L3 to fight stat. error

The $F_{2,c}^{\gamma}$ measurement

The world data on F_2^γ

What have we got?

- About 50 measurements
- Kinematical coverage:
 - $6\cdot 10^{-4} \leq x < 1$, and
 - $1.9 \leq \langle Q^2
 angle \leq 780 \ {
 m GeV^2}$
- Consistency with large redundancy
- Quite different levels of sophistication

Needs very careful interpretation

Photon structure: F_2

 \ominus The photon energy is not known $\Rightarrow x$ has to be obtained via W using the hadronic final state

 \oplus The photon structure is directly investigated as a function of x

⊕ Moderate radiative corrections

$$\boxed{F_2^{\rm e}(x_{\rm e},Q^2,P_{\rm max}^2)} = \int_{x_{\rm e}}^1 {\rm d} z \int_{P_{\rm min}^2}^{P_{\rm max}^2} {\rm d} P^2 f_\gamma(z,P^2) \cdot \boxed{F_2^\gamma(x,Q^2,P^2)}$$

- ullet First measurement of $F_2^{
 m e}$
- About 3-20% precisions both statistical and systematic
- ullet Steeply falling curve in $\log(x_{
 m e})$
- No radiative corrections and no bin-center corrections are applied
- LAC1 is disfavoured

Treatment of experimental data:

- Use correlation matrix if exists
- Treat sys. errors as uncorrelated
- Neglect P^2 effect and rad. cor.
- Symmetrise asymmetric errors
- Abandon TPC/2 γ data

Assumptions made for the fits:

- Fixed flavour scheme, uds as active flavours
- ullet Bethe-Heitler charm $m_{
 m c}=1.5\pm0.1{
 m GeV}$
- Perform DIS_{γ} and \overline{MS} fits 1 p.l.: $Q_0^2 = \Lambda^2$, hadron-like $\equiv 0$ 2 full: $uds(Q_0^2) = Nx^{\alpha}(1-x)^{\beta}$, $g(Q_0^2) = 0$

 1 Point-like fit:
 Use data with $(x > 0.45, Q^2 > 59 \text{ GeV}^2)$ and fit α_s
 $\alpha_s(M_{Z^0}^2) = 0.1183 \pm 0.0050 (exp.)_{-0.0028}^{+0.0029}$ (theor.)

 2 Full fit:
 Use all data, 5 parameter fit for $(N, \alpha, \beta, \alpha_s, Q_0^2)$
 $\alpha_s(M_{Z^0}^2) = 0.1198 \pm 0.0028 (exp.)_{-0.0046}^{+0.0034}$ (theo.)

The α_s from F_2^{γ} data

Comparison of $f_{g/\gamma}$ from F_2^{γ} with the HERA result

Consistency check

- Gluon from fit to F_2^{γ} data is at the low end of the H1 result
- Both the point-like and the hadron-like components from the full fit are needed to describe the data
- The pure point-like result shows the interplay between a longer evolution and non-vanishing PDFs at the starting scale

Include HERA data in the fit

- 1. The photon structure has now been investigated up to factorization scales of about 1000 GeV^2 , and the errors of the measurements have continuously been reduced.
- 2. The investigation of the electron structure function serves as a valuable cross-check, but does not give more insight into the photon structure.
- 3. The first NLO extraction of α_s based on LEP2 data has been performed. The quoted precision of the result is compatible with other determinations. It is very desirable to also include the HERA data into the fit.
- 4. ...

Outlook

Have recently you really some seen high luminosity F_2^{γ} data?

No, not recently!

May be they are just around that corner, but ... I am sure, as **Time Evolves Sooner** or Later they will Arrive.

on and electron structur

 \mathcal{B}

ICHEP 2002 Amsterdam 25 July 2002 Richard Nisius Page 17