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What is R6+6m?

o(ete™ — hadrons)
o(ete — utp~)
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Rt (s) = 3)_QF(1 + R(s))
-

Where R(s) can be calculated in perturbative
QCD, and has been calculated to NNLO, so
rq1 and ro are known

'R(S) —q+ Z Tn&n-—i—l '

n>0
Here a=as(pu?) /.

What is infra-red freezing?

Infra-red freezing is having well-behaved, finite -
behaviour in the infra-red (low energy) limit.

R(s) —R* as s = 0
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Can consider the s-dependence of R(s) at NNLO.
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Here b = (33 — 2N;)/6 , and ¢ = (153 —
19Ny)/12b ,are the first two universal QCD
beta-function coefficients. The condition for
R(s) to approach the infra-red limit R* as s—0
is for the Effective Charge beta-function p(R)
to have a non-trivial zero, p(R*) = 0. At
NNLO the condition for such a non-trivial zero
is po < 0. Putting Ny = 2 active flavours we
find for the NNLO RS-invariant pp = —9.72.
So that R(s) freezes in the infra-red to R* =
043 {Mattinaly and Stevenson)
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Should we believe this apparent NNLO freez-
ing ? In fact p» is dominated by a large b?n?
term arising from Analytical Continuation (AC)
of the Euclidean Adler D(—s) function to the
Minkowski R(s), p> = 9.40 — 72b%/12 ,similarly
3 will contain the large AC term —5cm?b?/12.



Thus to check freezing we should resum the
AC terms to all-orders. The Adler D-function
is the logarithmic energy derivative of the cor-
relator of two vector currents, INM(s),

d
D(s) = —s—T(s) .
ds

The Minkowskian R(s) is obtained by analyti-
cal continuation of the perturbative corrections
to D(-s),
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Where D has the perturbation series,

D(s)=a+ Y dpa™ Tl
n>0
Expanding D(se?) in powers of a(se?) and
integrating term-by-term we then obtain the
“contour-improved” perturbation series,

R(s) = A1(s) + D dnApy1(s)

n=1



The functions An(s) resum at each order an
infinite subset of AC terms present in the con-
ventional perturbation series for R(s),

A ﬂ__l__ o d9 n 10
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For the simplified case of a one-loop coupling
one has,
2

A2
bln(s//\m)
The integrals are straightforward and one ob-
tains,

A1(s) 2 arctan (sz(s))

a(s) =

b
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We then obtain the one-loop ‘“‘contour-improved”
series for R(s),

wba(s) a?(s)

Ris) = %arctan ( ) + dq

(1 4 b272a2(s)/4)
a>(s)
do 5
(1 4 b272a2(s)/4)
As s—oo the An(s) vanish as required by Asymp-
totic Freedom. However, although the one-

loop coupling has a “Landau Pole” at s
A the Ay,(s) are well-defined for all real s.
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As s—0, Aq(s) smoothly approaches from be-
low the infra-red value 2/b, whilst for n > 1
the An(s) vanish. Thus in the infra-red limit
R(s) is asymptotic to R(0) = 2/b to all-orders
in perturbation theory. |



We now turn to realistic QCD, beyond the one-
loop approximation. It is convenient to work
in an 't Hooft scheme, where the non-universal
beta-function coefficients are all zero, and the
beta-function equation has its two-loop form,

da(u?) b 5, 2 >

= —— 1

P 50 (1)( + ca(p®))
Crucially in such an RS we can express a(u?)
analytically, in_closed-—form as

a(u?) = — !
() o[l + W_1(A(p2))]

—b/2c
AG2) = 1( “2)

e A%Tg
Here W denotes the Lambert W function,
defined implicitly by W(2)exp(W(z))=z. The
“_1" subscript denotes the branch of the W
function required for Asymptotic Freedom.
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Choosing a renormalization scale p? = zs we
can then evaluate the functions A, (s) in closed-
form in terms of the W function

A (.9):“}“/.7r doa™(zse")
N on ) x

Expressing the integrand in terms of the W
function,
1
c[1 + W(A(xse®))]
~and making the change of variable w =
W (A(zse?)), we then arrive at the elementary
integral

a(zse?) = —

_ D" e dw
An+1(5) T sholiar /l*(s)’w(l +w)"
I(s) = W_1(A(zse'™))
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Thus we obtain the explicit results

A1(s) =2 + = Imlin(I(s))]
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Provided that (b/c) > 0 corresponding to N, <
9 quark flavours, one finds that the An(s) are
well-defined for all real s, with A;(s) approach-
ing the infra-red limit 2/b from below, and for
n > 1 An(s) vanishing, so that R(s) is asymp-
totic to R(0) = 2/b to all-orders in perturba-
tion theory.



Since the freezing result holds to all-orders in
perturbation theory it is RS-independent. The
use of an ‘t Hooft scheme serves to make the

freezing manifest.

For a fixed-order zero of the beta-function one
would expect the asymptotic infra-red behaviour
R(s) — R*~s7 where ~ is a critical exponent.
For the freezing induced by resummation of AC
terms one finds instead the steeper behaviour

L 2 —1/c—2/b
ey

Again this involves the ubiquitous Lambert W
function.
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IR renormalons in the infra-red limit

By itself all-orders perturbation theory is unde-
fined due to infra-red (IR) renormalons. The
renormalon ambiguities cancel against the non-
logarithmic UV divergences of the Operator
Product Expansion (OPE). The vanishing of
the An(s) for n > 1 in the infra-red, means that
the IR renormalon ambiguities disappear, and
hence presumably the non-logarithmic UV di-
vergences of the OPE also vanish in the infra-
red. Thus for Minkowskian quantities it ap-
pears that perturbative and non-perturbative
effects are separately well-defined in the infra-
red limit.



Phenomenological applications of the freezing
result

The key conclusion is that the contour-improved
(APT) version of perturbation theory remains

well-defined in the infra-red limit, and if suit-

ably corrected to include quark masses and

thresholds, can be used to supplement low en-

ergy data on R_;__(s) in estimating hadronic

corrections to QED a(M7z), and to the anoma-

lous magnetic moment of the muon. The ex-

plicit analytical expressions for the A,(s) make

this straightforward to implement.

If one applies a smearing procedure, such as
that of Poggio, Quinn and Weinberg, to the
contour-improved perturbation theory and the
data for R_4_ -, one averages out non-perturbative
resonances and should find good agreement.



