Top quark pair production and decay at hadron colliders: Predictions at NLO QCD including spin correlations

Arnd Brandenburg, DESY Hamburg

ICHEP02, 26.7.2002

Based on

- W. Bernreuther, A.B., Z.G. Si, Phys. Lett. **B 483** (2000) 99 [hep-ph/0004184]
- W. Bernreuther, A.B., Z.G. Si, P. Uwer, Phys. Lett. B 509 (2001) 53 [hep-ph/0104096];
 Phys. Rev. Lett. 87 (2001) 242002 [hep-ph/0107086]
- A.B., Z.G. Si, P. Uwer, Phys. Lett. **B 539** (2002) 235 [hep-ph/0205023]

Motivation

- Top Quark: heaviest known fundamental particle
 Production and decay of top quarks involve very high energy scales
- $\Gamma_t \approx 1.4 \text{ GeV} \gg \Lambda_{QCD} \Rightarrow$ no hadronization effects in top decays \Rightarrow in particular, information on top spin not diluted, can be analysed using the decay products
- Perturbation theory gives reliable description of top quark production and decay
- Large number of top quarks will be produced at the upgraded Tevatron ($\sim 10^4 \text{ t}\overline{t}/\text{year}$) and the LHC ($\sim 10^7 \text{ t}\overline{t}/\text{year}$)

Top quark: Optimal laboratory to search for new physics

So far, top quark interactions not precisely known. Questions to be answered:

- top still point-like?
- m_t due to usual Higgs mechanism?
- Production: new mechanisms, e.g. new heavy spin 0 resonances that are strongly coupled to tt?
- Decay: deviation from V-A structure?
- top quark couplings and quantum numbers as expected (e.g. V_{tb})?

Spin observables will help to answer these (and other) questions.

- Single top production: **polarization** of top quarks
- tt production: also spin correlations
- \Rightarrow more **precise** investigations of top quark interactions possible.
- \Rightarrow probe 'quasi-free' quark

A. Brandenburg, DESY Hamburg

Theoretical framework

Studying the above questions in top quark pair production at hadron colliders requires:

- precise SM prediction including QCD corrections
- cross section that is fully differential in top quark decay products We need differential cross section in NLO QCD for

$$p\bar{p}, pp \rightarrow t\bar{t}X \rightarrow \begin{cases} 2\ell + n \ge 2 \text{ jets} + P_T^{miss} \\ \ell + n \ge 4 \text{ jets} + P_T^{miss} \\ n \ge 6 \text{ jets} \end{cases}$$

Theoretical framework: **leading pole approximation** (LPA)

- expand amplitude around complex poles of unstable particle propagators
- keep only the leading pole terms
- within LPA: factorizable and non-factorizable contributions

A. Brandenburg, DESY Hamburg

Theoretical framework

Here we will consider only the **factorizable** radiative corrections. Further we apply the **on-shell approximation** for t and \overline{t} propagator:

$$\lim_{\Gamma/m\to 0}|\frac{1}{k^2-m^2+im\Gamma}|^2\to \frac{\pi}{m\Gamma}\delta(k^2-m^2)$$

Associated error is of order Γ/m .

Necessary ingredients at NLO QCD within this approximation:

Differential cross sections keeping full information on t and \overline{t} spin for parton processes:

- $q\bar{q} \rightarrow t\bar{t}, gg \rightarrow t\bar{t} \text{ to order } \alpha_s^3$
- $q\bar{q} \rightarrow t\bar{t}g, \ gg \rightarrow t\bar{t}g, \ q(\bar{q}) \rightarrow t\bar{t}q(\bar{q})$ to order α_s^3
- $t \rightarrow b\ell \nu, bq\bar{q}'$ to order α_s

Observing spin correlations

Spin correlations show up in in angular distributions of top decay products, e.g.

$$\frac{1}{\sigma} \frac{d^2 \sigma(h_1 h_2 \to t \overline{t} \to \ell^+ \ell^- X)}{d \cos \theta_+ \cos \theta_-} = \frac{1}{4} (1 - \mathbf{C} \cos \theta_+ \cos \theta_-)$$

 θ_+, θ_- : angles of ℓ^{\pm} in the t (t) rest frame with respect to **arbitrary** axes ('spin quantization axes'). C reflects strength of tt spin correlations for the chosen quantization axes, $-1 \leq C \leq +1$.

Example: Helicity correlation at the LHC A.B., Bernreuther, Simak, Sonnenschein '00

Observing spin correlations

C factorizes:

$$\mathbf{C} = \kappa_+ \kappa_- \mathbf{D}$$

with $t\overline{t}$ double spin asymmetry D

$$\mathbf{D} = \frac{\mathsf{N}(\uparrow\uparrow) + \mathsf{N}(\downarrow\downarrow) - \mathsf{N}(\uparrow\downarrow) - \mathsf{N}(\downarrow\uparrow)}{\mathsf{N}(\uparrow\uparrow) + \mathsf{N}(\downarrow\downarrow) + \mathsf{N}(\uparrow\downarrow) + \mathsf{N}(\downarrow\uparrow)}$$

 κ_{\pm} : spin analysing power of charged lepton in decays $t(\overline{t}) \to b(\overline{b}) \ell^{\pm} \nu(\overline{\nu})$

1 dГ _	$1\pm\kappa_{\pm}\cos\vartheta_{\pm}$
$\overline{\Gamma} d \cos \vartheta_{\pm}$	2

 $\cos \vartheta_{\pm}$ angles of ℓ^{\pm} w.r.t. t (t) spin.

Spin analysing power of top decay products

Leptonic decays $t \to b \ell \nu$

 $\kappa_{+} = \kappa_{-} = 1 - 0.015 \alpha_{s}$ Czarnecki, Jezabek, Kühn '91

 \Rightarrow Charged lepton perfect analyser of top quark spin.

Hadronic decays $t \rightarrow bq\bar{q}'$: Analogous decay distribution. QCD corrected spin analysing power A.B., Si, Uwer '02

 $\kappa_{\rm b} = -0.41(1 - 0.39 \alpha_{\rm s}) = -0.39,$

 $\kappa_{i} = +0.51(1 - 0.67 \alpha_{s}) = +0.47.$

 κ_i : Analysing power of least energetic non-b-quark jet.

NLO results for **C** that will be shown are for **double lepton channel** of $t\bar{t}$ decays. NLO results for **single lepton channel** diluted by $\kappa_{j,b}$. (Over-)compensated by higher statistics!

Double spin asymmetry at parton level

NLO QCD results for $\overline{\text{MS}}$ subtracted parton cross sections $q\bar{q} \rightarrow t\bar{t}(g)$, $gg \rightarrow t\bar{t}(g)$, $q(\bar{q})g \rightarrow t\bar{t}q(\bar{q})$ with $t\bar{t}$ spins summed over: Nason, Dawson, Ellis '88; Beenakker, Kuijf, van Neerven, Smith '89

Double spin asymmetry at parton level

Analogous decomposition for

$$\begin{split} \hat{\boldsymbol{\sigma}} \mathbf{D} &= \hat{\boldsymbol{\sigma}}(\uparrow\uparrow) + \hat{\boldsymbol{\sigma}}(\downarrow\downarrow) - \hat{\boldsymbol{\sigma}}(\uparrow\downarrow) - \hat{\boldsymbol{\sigma}}(\downarrow\uparrow) \\ &= \frac{\alpha_{s}^{2}}{m_{t}^{2}} \left\{ g^{(0)}(\eta) + 4\pi\alpha_{s} \left[g^{(1)}(\eta) + \tilde{g}^{(1)}(\eta) \ln(\mu^{2}/m_{t}^{2}) \right] \right\}, \end{split}$$

Helicity basis: Spin quantization axis is $t(\overline{t})$ direction of flight.

Double spin asymmetry at parton level

$$\begin{split} \hat{\boldsymbol{\sigma}} \mathbf{D} &= \hat{\boldsymbol{\sigma}}(\uparrow\uparrow) + \hat{\boldsymbol{\sigma}}(\downarrow\downarrow) - \hat{\boldsymbol{\sigma}}(\uparrow\downarrow) - \hat{\boldsymbol{\sigma}}(\downarrow\uparrow) \\ &= \frac{\alpha_{s}^{2}}{m_{t}^{2}} \Big\{ g^{(0)}(\eta) + 4\pi\alpha_{s} \left[g^{(1)}(\eta) + \tilde{g}^{(1)}(\eta) \ln(\mu^{2}/m_{t}^{2}) \right] \Big\}, \end{split}$$

Beam basis: Spin quantization axis is proton beam.

$$\begin{split} \hat{\boldsymbol{\sigma}} \mathbf{D} &= \hat{\boldsymbol{\sigma}}(\uparrow\uparrow) + \hat{\boldsymbol{\sigma}}(\downarrow\downarrow) - \hat{\boldsymbol{\sigma}}(\uparrow\downarrow) - \hat{\boldsymbol{\sigma}}(\downarrow\uparrow) \\ &= \frac{\alpha_{s}^{2}}{m_{t}^{2}} \Big\{ g^{(0)}(\eta) + 4\pi\alpha_{s} \Big[g^{(1)}(\eta) + \tilde{g}^{(1)}(\eta) \ln(\mu^{2}/m_{t}^{2}) \Big] \Big\}, \end{split}$$

'Off-diagonal' basis: Spin quantization axis defined by $\hat{\sigma}(\uparrow\downarrow) = \hat{\sigma}(\downarrow\uparrow) = 0$ ($\Rightarrow \mathbf{D} = \mathbf{1}$) for $q\bar{q} \rightarrow t\bar{t}$ at tree level Parke, Shadmi '96; Mahlon, Parke '97

Double angular distributions

$$\frac{1}{\sigma} \frac{d^2 \sigma(h_1 h_2 \to t \overline{t} \to \ell^+ \ell^- X)}{d \cos \theta_+ \cos \theta_-} = \frac{1}{4} (1 - \mathbf{C} \cos \theta_+ \cos \theta_-)$$

For $\mu_F = \mu_R = m_t = 175$ GeV and CTEQ5L (LO), CTEQ5M (NLO) we obtain:

	$ $ pp̄ at $\sqrt{s} = 2$ TeV		pp at $\sqrt{s} = 14$ TeV		
	LO	NLO	LO	NLO	
$\mathbf{C}_{hel.}$	-0.456	-0.389	0.305	0.311	
\mathbf{C}_{beam}	0.910	0.806	-0.005	-0.072	
$\mathbf{C}_{off.}$	0.918	0.813	-0.027	-0.089	

- Tevatron: Large dilepton spin correlations in beam and off-diagonal basis. QCD corrections $\sim -10\%$
- LHC: beam and off-diagonal basis bad (due to dominance of $gg \rightarrow t\bar{t}$). Helicity basis good choice, QCD corrections small.

Scale dependence

Scale dependence of **C** at NLO:

	$p\overline{p}$ at $\sqrt{s} = 2$ TeV			pp at $\sqrt{ extsf{s}} = 14$ TeV
μ	$C_{hel.}$	C_{beam}	$C_{off.}$	C _{hel.}
$m_t/2$	-0.364	0.774	0.779	0.278
m _t	-0.389	0.806	0.813	0.311
2m _t	-0.407	0.829	0.836	0.331

PDF dependence

Dependence on choice of parton distribution functions:

	pp at $\sqrt{s} = 2$ TeV			pp at $\sqrt{s} = 14$ TeV \mid
PDF	$C_{hel.}$	C_{beam}	$C_{\text{off.}}$	C _{hel.}
GRV98	-0.325	0.734	0.739	0.332
CTEQ5	-0.389	0.806	0.813	0.311
MRST98	-0.417	0.838	0.846	0.315

- CTEQ5 and MRST98 agree up to a few percent
- difference between GRV98 and MRST98 at Tevatron $\sim 10\%$

Note: gluon and quark contributions enter with different sign. \Rightarrow Constraining PDFs by measuring spin correlations?

Dependence on top mass and kinematic cuts

Changing m_t from 170 \longrightarrow 180 GeV implies: **Tevatron**:

$$\begin{split} C_{\text{hel.}} &= -0.378 \longrightarrow C_{\text{hel.}} = -0.397 \\ C_{\text{beam}} &= 0.790 \longrightarrow C_{\text{beam}} = 0.817 \\ C_{\text{off.}} &= 0.797 \longrightarrow C_{\text{hel.}} = 0.822 \end{split}$$

LHC: Change is less than 1%.

Kinematic cuts: **Tevatron**: $|\mathbf{k}_t^T| > 15 \text{ GeV}, |\mathbf{r}_t| < 2$; **LHC**: $|\mathbf{k}_t^T| > 20 \text{ GeV}, |\mathbf{r}_t| < 3$

	$p\bar{p}$ at $\sqrt{s} = 2$ TeV			pp at $\sqrt{s} = 14$ TeV
	C _{hel.}	C_{beam}	$C_{\text{off.}}$	$C_{hel.}$
no cuts	-0.389	0.806	0.813	0.311
with cuts	-0.386	0.815	0.823	0.295

Conclusions and Outlook

Conclusions

- **t**t spin correlations are **large** effects, can be studied at Tevatron and LHC
- QCD corrections are under control
- spin correlations are suited to study in detail top quark interactions, search for new effects, and may help to constrain PDFs

Outlook

- Implementation of NLO matrix elements in an event generator
- Study of non-factorizable corrections
- Resummation