Photon and Jet Physics at CDF

Jay R. Dittmann

Fermi National Accelerator Laboratory

(For the CDF Collaboration)

31st International Conference on High Energy Physics Amsterdam, The Netherlands, 2002

QCD Physics at the Fermilab Tevatron

2

- The Fermilab Tevatron Collider serves as an arena for precision tests of QCD with photons, W/Z's, and jets
 - Highest Q² scales currently achievable (searches for new physics at small distance scales)
 - Sensitivity to parton distributions over broad kinematic range
- Data are compared to a variety of QCD calculations (NLO, resummed, leading log Monte Carlo...)
- Dynamics of any new physics will be from QCD; backgrounds to any new physics will be from QCD processes!

QCD Physics at the Fermilab Tevatron

3

- Overall, CDF and D0 data agree well with NLO QCD
- Some puzzles have been resolved:
 - W + jets: σ (W + ≥1 jet) / σ (W) ratio
- Some puzzles remain:
 - Jet excess at high E_T (and high mass)
 - 630 GeV jet cross section and x_T scaling
 - Heavy flavor cross sections (see C. Paus talk)
 - Comparison of $k_{\rm T}$ inclusive jet cross section and NLO theory
- Improved theoretical predictions are being developed:
 - Inclusive photon cross section
- And searches still continue:
 - BFKL effects

ICHEP 2002, Amsterdam Pho

Photon and Jet Physics at CDF

CDF Photons in Run 1B

Inclusive photon cross section

- Deviations from NLO QCD predictions are observed at two different center of mass energies: 1800 GeV and 630 GeV
 - steeper slope at low $\ensuremath{\mathsf{p}_{\mathsf{T}}}$
 - normalization problem at high p_T (1800 GeV)

Data: Phys. Rev. D 65 112003 (2002)

Theory: Phys. Rev. Lett. 73, 388 (1994) Nucl. Phys. B453, 334 (1995)

CDF Photons in Run 1B

- CDF's results are consistent with those from D0 and UA2:

Phys. Rev. Lett. 84, 2786 (2000)

Phys. Lett. B 263, 544 (1991)

ICHEP 2002, Amsterdam

CDF Photons in Run 1B

 What is the cause? One possibility is the effect of soft gluon initial state radiation. See k_T Effects in Direct-Photon Production, PRD 59 074007 (1999)

ICHEP 2002, Amsterdam

CDF Run 2 Inclusive Photon Production

• CDF Run 2 data (Aug 2001 – Feb 2002) 8 pb⁻¹

Inclusive photon trigger:

- E_T > 25 GeV
- |η| < 3.6
- Isolated energy in calorimeter
- Had/EM requirement
- Require central strip chamber (CES) for $|\eta| < 1.0$

Offline selection:

- Require $|\eta| < 1.0$
- Tracking isolation
- Additional quality requirements

Diphoton production is interesting both for tests of QCD and searches for new phenomena!

The diphoton mass reach for Run 2 extends out to nearly 600 GeV/c²

Dominant mechanism at low mass is gg scattering; qq⁻at higher masses

Photon and Jet Physics at CDF

9

Inclusive Jet Cross Section at the Tevatron

- Data Samples:
 - Run 1A (1992-93)
 CDF: 19.5 ± 0.7 pb⁻¹
 - Run 1B (1994-95)
 CDF: 87 ± 9 pb⁻¹ D0: 92 ± 6 pb⁻¹
- Event and Jet Selection:
 - Cone algorithm (R = 0.7) for jet reconstruction
 - |z_{vert}| < 50 cm (D0), < 60 cm (CDF)
 - Eliminate events with large missing E_T (D0 and CDF)
 - Energy timing (CDF)
 - Jet quality cuts (D0)
 - Uncertainty ~0.5% (CDF); ~1% (D0)

In Run 1, CDF observes an excess in the jet cross section at large jet E_T , outside the range of the theoretical uncertainties

CDF: PRD 64, 032001 (2001), D0: PRL 82, 2451 (1999)

- Both experiments compare to NLO QCD calculations
 - D0: JETRAD, modified Snowmass clustering (R_{sep} =1.3, μ_F = μ_R = $E_{Tmax}/2$)
 - CDF: EKS, Snowmass clustering $(R_{sep}=1.3, \mu_F=\mu_R=E_{Tjet}/2)$

J. R. Dittmann, FNAL

Tevatron jets and the high-x gluon

- Best fit to CDF and D0 central jet cross sections provided by CTEQ5HJ PDFs
- But this is not the central fit extra weight given to high E_T data points.

The central fit for CTEQ6 is more "HJ"-like, but... We need a more powerful data sample!

ICHEP 2002, Amsterdam

Inclusive Jet Cross Section at the Tevatron

Jets at 630 GeV

 Jet measurements at 630 GeV don't agree well with NLO QCD predictions!

ICHEP 2002, Amsterdam

Inclusive Jet Cross Section at the Tevatron

x_{T} scaling

- x_{T} scaling ratio of 1800 to 630 GeV jet cross sections doesn't agree with NLO QCD either...
- **Ratio of Scaled Cross Sections** 3 CDF PRELIMINARY **Ratio of Scaled Cross Sections** CDF PRELIMINARY CDF Preliminary Data $0.1 < |\eta_{iet}| < 0.7$ D0 Data $|\eta_{iet}| < 0.5$ 2.5 EKS NLO QCD with: 1. CTEQ4M, μ =0.25E. 2.5 2. CTEQ4M, μ=0.5E, 3. CTEQ3M, $\mu = 0.5E$, 4. MRSA, $\mu = 0.5E_{t}$ 2 2 1.5 1.5 1 1 EKS NLO QCD, $\mu = E_t/2$: CTEQ4M (1) CTEQ3M (2) 0.5 /s=630 GeV MRSA(3) 0.5 's=546 GeV Systematic Uncertainty $\pm 1\sigma$ Λ 0 0.35 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.25 0.35 0.4 0.45 0.5 0.05 0.1 0 15 0.2 0.3 Jet Xt Jet Xt ICHEP 2002, Amsterdam Photon and Jet Physics at CDF J. R. Dittmann, FNAL

3

D0 sees a similar disagreement (but different behavior at low E_{τ} ?)

Jet Production in Run 2

The increase in the center-of-mass energy from 1.8 to 1.96 TeV has a large effect on the high E_T jet rate.

Inclusive jet cross section at 1.8 and 2.0 TeV (CTEQ4HJ)

Jet Yields Bin 1 - 0.1 < |y| < 0.7

For the full Run IIa sample the number of jets above 400 GeV will increase from 11 to \sim 500.

 $\sim 18 \text{ events}$ by June

 ~ 75 events by end of year

ICHEP 2002, Amsterdam

Jets will be measured with the k_T clustering algorithm as well as with improved cone algorithms.

Jet Production in Run 2

• Measurements in Run 2 will extend to forward regions! It's crucial to measure jet cross sections over a large rapidity range

First Look at Run 2 Jet Data

First Look at Run 2 Jet Data

A Run 2 Dijet Event... both jets in plug calorimeter $E_T^{jet1} = 154 \text{ GeV}$ $E_T^{jet2} = 147 \text{ GeV}$ Raw jet $E_T!!$

ICHEP 2002, Amsterdam

CDF Three-Jet Production Cross Section

• Features of CDF Run 1B inclusive three-jet events are compared to NLO QCD predictions (Kilgore & Giele, hep-ph/0009193)

These are the first comparisons of 3-jet production to a NLO QCD prediction at a hadron collider!

Event selection

- Calorimeter clusters are reconstructed as jets using the CDF cone algorithm with radius R = 0.7.
- − Events with ≥3 jets that pass the ΣE_T > 175 GeV trigger are boosted into the 3-jet rest frame. The energies of the 3 leading jets are corrected, unsmeared, and numbered such that $E_3 > E_4 > E_5$.
- Require $E_T^{jet} > 20 \text{ GeV}$, $|\eta| \le 2.0$, $\Sigma E_{T3jets} > 320 \text{ GeV}$, cone separation $\Delta R > 1.0$, remove and correct for multiple interactions, apply other data quality cuts.
- Construct mass m_{3jet} of the system and Dalitz variables $X_i = 2E_i / m_{3jet}$ for the jets.

CDF Three-Jet Production Cross Section

- Bin the Dalitz plane in units of 0.02×0.02 and plot the data.
- Apply NLO calculation to predict the inclusive 3-jet cross section versus X₃ and X₄; convert to predicted number of events at CDF luminosity; bin in Dalitz plane.

CDF Three-Jet Production Cross Section

The measured total 3-jet production cross section, using the full kinematically allowed Dalitz plane: Consistent with NLO QCD

 $466 \pm 2(stat) + 206(syst) pb$

402 ± 3 pb

- Jet events at the Tevatron consist of:
 - 2->2 hard scatter
 - initial and final state radiation
 - semi-hard scatters (multiple parton scattering)
 - beam-beam remnant interactions

Underlying event energy (multiple parton scattering, beam-beam remnants, and (part of) initial and final state radiation) must be subtracted from jet energies for comparison of jet cross sections to NLO QCD predictions (largest uncertainty for low E_T) Interesting interface between perturbative and non-perturbative physics!

• Complementary analyses:

First examines jet event structure from 1 GeV to 50 GeV looking at *towards, away* and *transverse* regions in phi for central rapidities

Second examines jet events over the range from 50 GeV to ~300 GeV looking in 2 cones at same η as lead jet and at ±90 degrees in phi away, again in the central region

Both analyses use charged track information ($\Sigma p_{Ttracks}$) and compare their results to predictions from leading log Monte Carlo programs

• PYTHIA 6.206 Defaults

Plot shows the mean number of charged tracks in the "Transverse" region versus P_T (leading jet), compared to the QCD hard scattering predictions of PYTHIA 6.206 (P_T (hard) > 0) using the default parameters for multiple parton interactions and CTEQ3L, CTEQ4L, and CTEQ5L.

• Tuned PYTHIA 6.206

Plot shows the mean number of charged tracks in the "Transverse" region versus P_T (leading jet), compared to the QCD hard scattering predictions of two tuned versions of PYTHIA 6.206 (P_T (hard) > 0, CTEQ5L).

Max/Min 90° Cones

- Of the 2 cones at 90°, define the one with the greater energy as max and the lesser as min
- Max cone increases as lead jet E_{τ} increases; *min* cone stays constant at a level similar to that found in minimum bias events at 1800 GeV
- HERWIG agrees well with the data ٠ without any tuning
- PYTHIA parameters can be tuned to give a better fit to jet and min bias data at 1800 GeV

ICHEP 2002. Amsterdam

Photon and Jet Physics at CDF

smaller impact

parameter

25

Jet Shape Analysis – Method

CDF Run 2 Jet Shape Analysis

- Select inclusive dijet events using a cone algorithm with radius R = 0.7
- Define $\Psi(r)$ as the fraction of the jet's E_T inside an inner cone of radius r < R
- By definition, $\Psi(r=R) = 1$

J. R. Dittmann, FNAL

CDF Run 2 Jet Shape Analysis

Measured integrated jet shapes

- Measurements over wide range of jet E_T and η
 - 30 GeV < E_τ < 135 GeV
 - 0.1< |η| < 2.3
- Measurements at the calorimeter level

Comparison to HERWIG + CDF detector simulation

HERWIG predicts jets that are too narrow at low E_{T} and high $\eta \rightarrow$ underlying event

CDF RUN II Preliminary (16 pb⁻¹)

ICHEP 2002, Amsterdam

CDF Run 2 Jet Shape Analysis

Jet shapes measured with calorimeter vs. tracks

- Measurement performed for central jets with good Central Outer Tracker (COT) coverage
- Excellent agreement between calorimeter and tracking measurements
- HERWIG slightly narrower than the data for low-E_T jets

CDF RUN II Preliminary (16 pb^{-1}) Ê HERMIG CAL TONERS 0.75 30 < E[#] < 40 GeV 40 < E,[#] < 55 GeV 0.5 $0.1 \le 1 n^{\mu} \le 0.7$ 0.1 < | 📌 | < 0.7 0.25 0 Ę 0.75 55 < E^J[⊭] < 75 GeV 75 < E.^{Je} < 95 GeV 0.5 $0.1 < 1 n^{H} I < 0.7$ $0.1 \le |\eta^{\mu}| \le 0.7$ 0.25 0 Ê 0.75 95 < E^M < 115 GeV 115 < E^M < 135 GeV 0.5 $0.1 \le 1 \pi^{11} \le 0.7$ $0.1 < |\eta^{\mu}| < 0.7$ 0.25 Ô. 0.2 0.40.6 0.20.40.6۵ O.

Similar measurements needed for b-quark tagged jets

ICHEP 2002, Amsterdam

28

Summary

- Recent Run 1 measurements of inclusive photon production indicate discrepancies with NLO QCD. A larger data sample is needed!
- The Run 2 inclusive jet cross section, extending beyond 600 GeV, is expected to settle the issue of the high-x excess seen in Run 1 data. Is the high-x gluon distribution responsible?
- New measurements of 3-jet production at CDF compare well to NLO QCD predictions.
- Studies of the underlying event at CDF have revealed inadequacies of some Monte Carlo generators and have led to improved tuning.
- New measurements of jet shapes in Run 2 dijet events generally agree well with predictions of HERWIG + detector simulation.

Run 2 analyses of photons and jets at CDF are well underway!