

Jet and Photon Physics at DØ

Marek Zieliński

University of Rochester

(For the DØ Collaboration)

ICHEP 2002, Amsterdam

Outline

- Introduction
- Jet cross sections
 - ➔ inclusive results
 - multi-jet results
- Photon cross sections
- Diffractive W and Z production
- Run 2
 - status
 - ➔ first jet results
- Summary

Jets at the Tevatron

E tower

Here, jets of fixed cone size

 \rightarrow k_T-jet results in the talk by U. Bassler

 $E_{T}^{jet} = \sum$

 $R_i \leq 0.7$

- Run 1:
 - Add up towers around a "seed"
 - ➔ Iterate until stable
 - → Jet quantities: E_T , η, ϕ
- Modifications for Run 2:
 - → Use 4-vector scheme, p_T instead of E_T
 - Add midpoints of jets as additional starting seeds
 - ➔ Infrared safe
- Correct to particles
 - → Underlying event, previous/extra pp interactions, energy loss out of cone due to showering in the calorimeter, detector response, E_T resolution

Marek Zieliński, University of Rochester

Inclusive Jet Cross Section at 1800 GeV

$$\frac{d^2\sigma}{dE_T d\eta} = \frac{N_{jet}}{\Delta E_T \Delta \eta \varepsilon L} \text{ vs. } E_T$$

Marek Zieliński, University of Rochester

ICHEP, 26 July 2002, Amsterdam

Good Agreement with NLO QCD

Rapidity-Dependent Inclusive at 1800 GeV

- 90 data bins
 - → Full correlation of uncertainties
- Used in CTEQ6 and MRST2001 fits to determine gluon at large x "better than ever before"
 - Enhanced gluon at large x

Marek Zieliński, University of Rochester

Ratio of Cross Sections: 630 GeV / 1800 GeV

 Various theoretical and experimental uncertainties tend to cancel in the ratio

Marek Zieliński, University of Rochester

- Data 10-15% below NLO QCD
 - Agreement Probability (χ² test) with CTEQ4M, CTEQ4HJ, MRST: 25-80%
- Comparison with CDF

- A ~3 GeV shift in jet energies could account for the discrepancies
 - → corrections for underlying event, showering in calorimeter, parton k_T...?
 - → larger than experimental uncertainty...

Inclusive R₃₂: 3 Jets / 2 Jets at 1800 GeV

$$R_{32} = \frac{\sigma_{\geq 3 \text{ Jets}}}{\sigma_{\geq 2 \text{ Jets}}} \quad vs \quad H_T = \sum_{\text{Jets}} E_T$$

- A study of soft jet emission
 → 70% of high-E_T jet events have a 3rd jet above 20 GeV
 - → 50% have a jet above 40 GeV
- Ratios provide reduced systematic uncertainties
- We observe very little sensitivity to PDFs
- Using JETRAD, investigate sensitivity to scale μ_R
 - → Single-scales (µ≈0.3H_T) seem better than mixed-scales
 PRL 86, 1955 (2001)

Low-E_T Multi-jet Production at 1800 GeV

- Now looking at multi-jets at low $E_T \approx 20 \text{ GeV} \dots$
- This region is sensitive to gluon radiation and multiple parton interactions
- E_T distribution of ≥ 1, 2, 3, and 4 jet events compared with MC predictions (Pythia – solid, Herwig -- dotted)
 - Without tuning, the MC predictions do not match the data:
 - ♦ excess of events for ≥3 and 4 jets at low-E_T end
 - \clubsuit wrong Φ distributions
 - Tune Pythia PARP(83) = 0.32 (fraction of core region of hadronic matter distribution)
- → Tune Herwig P_T^{min} to 3.7 GeV (minimum P_T of hard processes)
 DØ preliminary, hep-ex/0207046
 Marek Zieliński, University of Rochester

Photons at 630 and 1800 GeV

- Probe pQCD without the complication from jet identification and hadronization
 - DØ and CDF previously reported an excess of γ production for p_T<30 GeV at 1800 GeV (DØ: PRL 84, 2786 (2000))

First measurement at forward rapidities PRL 25, 251805 (2001)

Marek Zieliński, University of Rochester

Diffractive W and Z Production at 1800 GeV

Probe quark content of Pomeron
Measurement: look for rapidity gaps

- n_{L0} = # hit tiles in L0 detector
- n_{CAL} = # towers with energy above threshold in forward calorimeters

Peak at (0,0) indicates diffractive process W sample: 91 of 12622 events in (0,0) bin Z sample: 9 of 811 events in (0,0) bin

- New definitive observation of diffractive W signal: R_w=(0.89 + 0.20 - 0.19)%
- First observation of diffractive Z: R_z=(1.44 + 0.62 - 0.16)%
 - DØ preliminary, paper in preparation

ICHEP, 26 July 2002, Amsterdam

Hadronic Calorimeter

 In Run 2 we will be able to measure the scattered proton using the Forward Proton Detector:

EM Calorimeter

Marek Zieliński, University of Rochester

Start of Run 2

- Run 2 of the Tevatron started in March 2001
 - → Running at √s=1.96 TeV
- Considerable fraction of collected luminosity devoted to the commissioning of the detector
- Significant progress in establishing and refining "physics objects": e, μ, jets, EM and jet energy scale…
- 6 pb⁻¹ used for jet results (March-May 2002)

5

ICHEP, 26 July 2002, Amsterdam

5.5 5.6

5.1 5.2 5.3 5.4

Run 2: Calorimeter

- Using Run 1 calorimeter
- Uranium-Liquid Argon

stable, uniform response, radiation hard, fine segmentation

- Uniform, hermetic, coverage |η| < 4.2
- Compensating ($e/\pi \sim 1$)
- Good energy resolution
- New readout electronics to operate in Run 2 environment

Very stable running

~50 bad channels (0.1%)

Marek Zieliński, University of Rochester

Jet Energy Scale

 Measured jet energy is corrected to particle level

$$E_{ptcl}^{jet} = \frac{E_{det}^{jet} - E_{o}}{R_{jet}S}$$

- Detector *E*_{det}: jet energy in the detector, reconstructed with a cone algorithm
- Offset *E*₀: energy due to previous events, multiple interactions, noise etc.
- Response *R*_{jet} : calorimeter response to hadrons, measured from E_T imbalance in γ+jet events
- Showering S : net fraction of particle-jet <sup>γ E_T=27 GeV energy that remains inside jet cone after showering in the calorimeter
 </sup>

и 70 — Data Data Ш 60 — Drell-Yan + QCD

 $Z \rightarrow ee signal (Calorimeter only)$

Nent = 509

Jets Physics in Run 2

- At √s=1.96 TeV, cross section
 2x larger compared to Run 1
 for jets with p_T > 400 GeV
- Higher statistics will allow:
 - better determination of proton structure at large x
 - testing pQCD at a new level (resummation, NNLO theory, NLO event generators)
 - continued searches for new physics (compositeness, W', Z', extra dimensions etc...)
- New algorithms:
 - ➔ midpoints
 - \rightarrow massive jets, using jet p_T

Selecting Jets in Run 2

• Jet sample:

- Data taken during March-May 2002 period
- → Cone size R=0.7
- **→** |η|<0.7
- → Run selections based on hardware status, missing E_T
- Jet selection based on several calorimeter characteristics
- → Missing E_T < 0.7 p_T^{jet1}
 → |z_{VTX}| < 50 cm
 → E_{CAL} < 2 TeV

Marek Zieliński, University of Rochester

Jet Triggers in Run 2

Marek Zieliński, University of Rochester

- Hardware trigger (L1)
 - → Triggers on calorimeter towers
 - Fast readout
 - Multi-tower triggers
 - \rightarrow Trigger coverage $|\eta| < 0.8$ for this data
 - **\therefore Expanded to** $|\eta| < 2.4$ in June!
- Software trigger (L3)
 - Simple and fast jet algorithm on precision readout

Improved turn-on

2-jet event

- E_T^{jet1}~230 GeV
- E_T^{jet2}~190 GeV

Run 2 Jet Results

- Only statistical errors
- Luminosity L = 5.8 pb^{-1} (±10%)
- Preliminary jet energy scale
 30-50% syst. error in cross section
- Not fully corrected (for unsmearing, efficiencies)

Marek Zieliński, University of Rochester

- Coming shortly:
 - \rightarrow Much expanded η range
 - → L2 triggers, L1 large tiles
 - Improved energy scale
 - Efficiency corrections
 - → Ever increasing lumi...

Summary

Run 1:

- Jet results in good agreement with NLO QCD
- Good understanding of systematics, correlations
- Strong constraints on PDF's, especially high-x gluon
- Photon results consistent with NLO QCD
 - ✤ a hint of discrepancy at low p_T?
- Clear observation of diffractive W production, first for the Z

Run 2:

- DØ detector is working well after upgrade
- Jet measurements are well underway
- ➔ First results available for
 - ◆ Inclusive jet p_T spectrum 60 < p_T < 410 GeV</pre>
 - ✤ Dijet mass spectrum 150 < M_{ii} <750 GeV</p>
- Many precision measurements possible

Looking forward to more data!