

Jet Measurements at using a k_T Algorithm

Ursula Bassler LPNHE, Paris on behalf of the DØ collaboration

ICHEP-2002, Amsterdam

Outline

- Introduction: k_T jet algorithm @ DØ
- ABS 350: Inclusive Jet Cross Section Phys. Lett. B525 211, 2002 (hep-ex/0109041)
- ABS 407: Sub-jet Multiplicities Phys. Rev. D65 052008, 2002 (hep-ex/0108054)
- ABS 421: Thrust Cross Sections Preliminary

 DØ Run 1
 $p\overline{p}$ Data
 at
 \sqrt{s} = 1800 GeV & 630 GeV

 Run 1B (94-95)
 Run 1C (95)

 ~90 pb⁻¹
 ~0.6 pb⁻¹

- Calorimeter

$$η = - ln [tan (θ / 2)]$$
 $|η| < 4.2 λint > 7.2 (total)$

ICHEP-2002, Amsterdam

Pions:

Ursula Bassler, LPNHE-Paris

 $\sigma_{\rm E} / E = 45\% / \sqrt{E} + 4\%$

Run 1 k_T Algorithm

Jet Algorithms:

- Fixed cone: most DØ Run 1 results, all CDF results
- k_T-algorithm: New DØ Run 1 results:
 - fewer split-merge ambiguities,

Ellis, Soper Phys. Rev. D48 3160, 1993 Catani, Dokshitzer, Seymour, Webber Nucl. Phys B406 187, 1993

infrared safe to all orders in perturbation theory.

ICHEP-2002, Amsterdam

Inclusive Jet Cross Section

 \Rightarrow pQCD predictions, proton structure, quark compositeness

ICHEP-2002, Amsterdam

Comparisons with pdf's

- MRST: nearly constant offset
- CTEQ4M: improved description at high p_T
- CTEQ4HJ: better χ^2 , especially at high p_T

all data points					
pdf	χ²(ndf=24)	prob(%)			
CTEQ3M	37.6	3.8			
CTEQ4M	31.2	15			
CTEQ4HJ	27.2	29			
p _T > 100 GeV only					
p _T > 100 Ge	V only				
p _T > 100 Ge pdf	<mark>V only</mark> χ²(ndf=20)	prob(%)			
p _T > 100 Ge ^V pdf CTEQ3M	<mark>V only</mark> χ²(ndf=20) 17.4	prob(%) 62.7			
pdf CTEQ3M CTEQ4M	V only χ²(ndf=20) 17.4 15.8	prob(%) 62.7 72.7			

ICHEP-2002, Amsterdam

Comparison with Cone Result

- k_T vs. cone agreement is reasonable; marginal at low P_T
- NLO predictions: $\sigma(k_T, D=1) = \sigma(\text{cone}, R=0.7)$ within 1%

 \rightarrow the data is corrected back to particle level

 \rightarrow error correlations are large point-to-point in p_T, but largely uncorrelated between the two measurements.

ICHEP-2002, Amsterdam

Hadronization effects

- \rightarrow k_{T} jets are 7 (3)% more energetic at at 60 (200) GeV than cone jets:
- consistent with HERWIG at high p_T, p_T, at 2σ at low p_T

applying correction to to cone-jets improves improves agreement between the two algorithms

ICHEP-2002, Amsterdam

Ursula Bassler, LPNHE-Paris

 particle jets are more (less) energetic than parton jets with k_T (cone)
 → k_T collects more energy
 → cone looses energy

Multiplicity in Quark & Gluon Jets

Test of QCD: difference between quark & gluon jets

- \rightarrow ratio of color factors of gluons radiated from gluons/quarks = 9/4
- ~ multiplicity of objects in gluon/quark jets at asymptotic limit
- \rightarrow particles in a gluon jet are softer than in a quark jet
- Separate quark from gluon jets: top, Higgs, W+Jets events

 \Rightarrow measure the sub-jet multiplicity in quark and gluon jets

Sub-jets with the k_T algorithm algorithm

Merge criteria adjusted to study jet structure: \bullet re-run $k_{\rm T}$ algorithm on all particles already assigned to a jet

- determine gluon jet fraction f_{g} from MC: $f_{1800}=0.59 f_{630}=0.33$ (55< E_{T} <100 GeV)
- sub-jet multiplicity defined as: $M = f_g M_g + (1 f_g) M_q$
- assuming sub-jet multiplicity independent of \sqrt{s}

 \Rightarrow extract gluon (M_g)/quark (M_q) sub-jet multiplicities from data at 1800 and 630 GeV ICHEP-2002, Amsterdam Ursula Bassler, LPNHE-Paris

Sub-jets in Quark & Gluon Jets

- gluon jets have a higher sub-jet multiplicity as expected
- gluon jets good description by HERWIG
 - dominant uncertainties:
 - \rightarrow quark/gluon jet fraction, dependent on pdf
 - \rightarrow jet energy scale
 - result qualitatively in agreement with resummation resummation calculation from Forshaw & Seymour Seymour

$$\boldsymbol{R} = \frac{\left\langle M_{g} \right\rangle - 1}{\left\langle M_{q} \right\rangle - 1} \boldsymbol{R} = 1.84 \pm 0.15 \,(\text{stat}) \pm \frac{0.22}{0.18} (\text{sys})$$

HERWIG:1.91

ALEPH (e⁺e⁻): 1.7 ±0.1

Event Shape Variable: Thrust

Event shape variables allow to:

- study spatial distribution of hadronic final states
- test perturbative QCD, verify resummation calculations
- extract α_s

Thrust characterizes sphericity of an event

ICHEP-2002, Amsterdam

B

Thrust at hadron colliders

- difficulties: underlying event, pile-up, multiple interactions
 - \Rightarrow define thrust from 2 leading jets in thrust T₂
- thrust is not Lorentz invariant
 - \Rightarrow introduce Transverse Thrust T_2^T computed from p_t

$$T_2^{\mathrm{T}} = \max_{\hat{n}} \frac{\sum_{i} \left| \vec{p}_{t_i} \cdot \hat{n} \right|}{\sum_{i} \left| \vec{p}_{t_i} \right|} \qquad \sqrt{2} / 2 \le T_2^{\mathrm{T}} \le 1$$

- x-sect in bins of $H_{3T} = \sum_{i \leq 3} \left| \vec{p}_{t_i} \right| \ \propto Q^2$ on parton level

Dijet Transverse Thrust x-section

• Disagreement with JETRAD calculation in 2 regions:

 $\Rightarrow \sqrt{2/2} \leq T_2^T \leq \sqrt{3/2}$: LO calculation is $O(\alpha_s^4) \rightarrow NLO$ calculation?

 \Rightarrow limit (1-T) « 1 \rightarrow emission of soft and collinear gluons \rightarrow logarithmic terms terms in ln(1-T) \rightarrow resummation?

ICHEP-2002, Amsterdam

Summary

- DØ has successfully implemented and calibrated a k_T k_T jet algorithm in a hadron collider
- $\Rightarrow \text{ comparison of the } k_T \text{ x-section, cone x-section and} \\ \text{NLO calculations at low } p_t \text{ opened a discussion on} \\ \text{matters such us hadronization, underlying event and} \\ \text{and algorithm definition} \end{cases}$
- ⇒ quark & gluon jets have a different structure, consistent with HERWIG predictions
- ⇒ thrust distributions offer an excellent opportunity to test the recently developed NLO 3-jet generators
- Further measurements to come using Run 2 data

Systematic Uncertainties Uncertainties

Error Source	1st HT3 Bin Order of Magnitude (%)	2nd Bin Order of Magnitude (%)	3rd Bin Order of Magnitude (%)	4th Bin Order of Magnitude (%)
Luminosity	8	8	8	8
Unfolding	1-8	1-9	1 - 12	1 - 12
Pos Biasos + Effic	1	1	4	1
Low energy jets	0-4	0 - 2	0-2	0 - 2
Mom Scale	10 - 15	10 - 18	10 - 20	10 - 20

Error Source	1st HT3 Bin Order of Magnitude (%)	2nd Bin Order of Magnitude (%)	3rd Bin Order of Magnitude (%)	4th Bin Order of Magnitude (%)
Luminosity	8	8	8	8
Unfolding	10 - 85	10 - 30	5 - 20	5 - 20
Pos Biasos + Effic	1	1	1	4
Low energy jets	0 - 5	0 - 3	0 - 2	0-2
Mom Scale	10	10	10	10

ICHEP-2002, Amsterdam