# Jet production in deep inelastic scattering at HERA

Mark Sutton University of Oxford

26<sup>th</sup> July 2002 On behalf of the ZEUS and H1 Collaborations

### Preface

- The HERA collider provides a unique laboratory for the detailed study of the hadronic final state, bridging the gap between  $e^+e^-$  and  $p\bar{p}$  colliders and completing the coverage of standard model QCD processes.
- It is important understand the QCD final state at HERA in order to maximise the physics potential both at current and future colliders.
- Now a large portfolio of precision jet measurements from HERA only time to concentrate on a small sub-sample of the recent results.
- High precision data available at high  $E_T$  where non-perturbative contributions are small  $\parallel \rightarrow$  enables precision tests of our understanding of perturbative QCD.
- Allows the scale variation to be studied over many orders of magnitude in a single environment.

# **Overview**

- Introduction.
- The QCD hard subprocess I high  $Q^2$ ,
  - ▷ Extraction of  $\alpha_s$ .
  - ▷ Azimuthal asymmetry.
- The QCD hard subprocess II towards lower  $Q^2$ ,
  - ▷ Virtual photon structure.
- The QCD hard subprocess III,
  - ▷ Three-jet production in neutral current deep inelastic scattering.
  - ▷ Dijet measurements in charged current deep inelastic scattering.
- Conclusions.

### HERA kinematics

- HERA: an *ep* collider, 27.5 GeV positrons (or electrons) with:
  - ▷ 1994-1997: 820 GeV protons,  $\sqrt{s} = 300 \text{ GeV}$
  - ▷ 1998-2000: 920 GeV protons,  $\sqrt{s} = 318$  GeV



• Kinematic variables...



- ▷ (Negative) squared 4-momentum transfer
  - $Q^2 = -(k-k')^2.$

▷ Bjorken scaling variable

$$x \equiv \frac{Q^2}{2p.q}.$$

▷ Inelasticity

$$y \equiv \frac{p.q}{p.k}.$$

• With *ep* invariant mass *s* given by

 $Q^2 = sxy.$ 

### Jets in deep inelastic scattering

• Factorise jet cross-section into a convolution of PDF's in the proton,  $f_a$ , with short distance subprocess,  $d\hat{\sigma}_a$ ....

$$d\sigma_{\text{jet}} = \sum_{a=q,\bar{q},g} \int \mathrm{d}x \ f_a(x,\mu_F^2) \ \mathrm{d}\hat{\sigma}_a(x,\alpha_s(\mu_R^2),\mu_R^2,\mu_F^2) \times (1+\delta_{\text{had}})$$

• Inclusive jets in LAB frame only  $\mathcal{O}(\alpha \alpha_s^0)$  at LO.

ξp

• Both inclusive-jet and dijet production with high  $E_T$  in the BREIT frame,  $\mathcal{O}(\alpha \alpha_s)$  at LO.  $\square$  directly sensitive to QCD subprocess and the gluon density in the proton.  $\gamma^*$ 



• Large scale variation possible in both  $Q^2$  and  $E_T \blacksquare \Rightarrow$  what is the appropriate scale?

# The QCD suprocess I - high $Q^2$



- High  $Q^2 > 125 \text{ GeV}^2$
- Inclusive jet cross sections measured in the Breit frame in DIS.

 $E_{T,\text{jet}}^{\text{B}} > 8 \text{GeV}, \ -2 < \eta_{\text{jet}}^{\text{B}} < 1.8$ 

- Precision test of our understanding of perturbative QCD
- Agreement with NLO QCD prediction over many orders of magnitude in both  $Q^2$  and  $E_{T,iet}^B$ .

### **Inclusive jet production (contd.)**



- The hatched band shows the NLO scale uncertainty for,  $E_{T,\text{iet}}^{\text{B}}/2 < \mu_R < 2E_{T,\text{iet}}^{\text{B}}$ .
- At low  $Q^2$  and  $E_{T,jet}^B$ , the data are above the predictions of NLO QCD.
- Overall, reasonable agreement within the experimental and theoretical uncertainties  $\parallel \bullet \rightarrow$  extraction of the QCD coupling  $\alpha_s$ .

# **Extraction of the QCD coupling** – $\alpha_s$



- - Clear running observed with jet  $E_T$ .
  - H1 value for  $150 < Q^2 < 5000 \,\mathrm{GeV}^2$ ,
    - $\alpha_s(M_Z) = 0.1186 \pm 0.0030(\text{exp.})$  $^{+0.0039}_{-0.0045}$ (th.) $^{+0.0033}_{-0.0023}$ (pdf)
  - ZEUS value for high  $Q^2 > 500 \text{ GeV}^2$ ,

 $\alpha_s(M_Z) = 0.1212 \pm 0.0017$ (stat.)  $^{+0.0023}_{-0.0031}$ (syst.) $^{+0.0028}_{-0.0027}$ (th.)

- Dominant uncertainty from theory.
- Precision comparable with best measurements from elsewhere.

## Jet azimuthal asymmetry



• Angle of jet,  $\phi$  in Breit frame with respect to positron scattering plane,



• Distribution of the form  $\frac{d\sigma}{d\phi} = A + B\cos\phi + C\cos 2\phi$ 

predicted by perturbative QCD.

- Azimuthal dependence largely from the BGF process  $\blacksquare \Rightarrow$  expect  $Q^2$  dependence.
- NLO predictions in agreement with data, decreasing asymmetry with increasing  $Q^2$ .
- Asymmetry in jet production observed for the first time in hadronic collisions.

## Jet azimuthal asymmetry (contd.)

# ZEUS



- Asymmetry fitted with functional form  $\frac{1}{\sigma} \frac{d\sigma}{d\phi_{\text{jet}}^{\text{B}}} = \frac{1}{\pi} (1 + f_1 \cos \phi_{\text{jet}}^{\text{B}} + f_2 \cos 2\phi_{\text{jet}}^{\text{B}}).$
- Fit also for LO and NLO QCD predictions from DISENT.
- Large uncertainty in data II → observed
   Q<sup>2</sup> dependence not conclusive.
- NLO clearly favoured by the data.

#### **The QCD subprocess II – towards lower** $Q^2$



- Low  $Q^2$  region,  $5 < Q^2 < 100 \text{ GeV}^2$
- Standard NLO calculation (DGLAP parton-density evolution).
- NLO corrections large for low  $E_T$  and forward  $\eta_{\text{lab}}$ .
- Reasonable agreement for backward  $\eta_{\text{lab}}$ .
- For forward  $\eta_{\text{lab}}$  and low  $E_T$ , theory lies below data.





• Examine forward region,  $1.5 < \eta_{\text{lab}} < 2.8$ .

• Discrepancy between data and NLO large at low  $Q^2$  and low  $E_T$ . what are contributions from uncertainty on the gluon in the proton? virtual photon structure? alternative evolution schemes (CCFM, BFKL)?

# Dijet production – gluon density in the proton at low $Q^2$



• Fraction of the proton momentum entering dijet subprocess related to



- For higher  $Q^2$ , NLO predictions similar, gluon is less significant.
- At lower  $Q^2$ , small experimental uncertainties, larger sensitivity to the gluon.
- Scale uncertainty is large  $\blacksquare$  precludes accurate extraction at low  $Q^2$ .

# Low $Q^2$ and virtual-photon structure

- In dijet production, several mechanisms may play a rôle at very low  $Q^2$ .
- Formally, when  $Q^2 < E_T^2$  photon can be considered to have "resolved" structure  $\blacksquare$  Photon can interact directly or via a parton from the photon with some fraction  $x_{\gamma} < 1$  of the photon momentum.
- Possible contribution from longitudinally-polarised "resolved" photons  $\blacksquare$  vanishes as  $Q^2 \rightarrow 0$  and  $y \rightarrow 1$ .
- Unordered parton evolution, for example CCFM (Cascade), allows the two highest E<sub>T</sub> jets in an event to come from anywhere along the ladder
  Qualitatively similar to resolved photon picture, but without explicit photon structure.



#### **Virtual photon structure**

• H1 Preliminary

Herwig dir — Herwig dir+res<sub>T</sub>+res<sub>L</sub> Herwig res<sub>T</sub> --- Cascade



- Data suggest "resolved" component necessary at low  $Q^2$  or when average jet transverse energy,  $\overline{E_T}$  is large.
- Leading-order resolved component alone is not adequate.
- Longitudinal resolved photon contribution improves the description.
- Unordered CCFM parton cascade with no resolved photon (Cascade) predicts higher contribution.
- Need NLO comparison...

### **Virtual photon structure – comparison with NLO theory**



- DISASTER II NLO DIS no resolved photon.
- DISASTER ratio too low at lower  $Q^2$ .
- JetVIP II Only NLO calculation with resolved virtual photon.
- Expect larger resolved fraction when including resolved virtual photon.
- JetVIP larger direct-enhanced cross section III even lower fraction.
- Need additional NLO calculations.

### **The QCD subprocess III – Three jet production**



• Three-jet cross sections in the Breit frame  $\square \bigcirc \mathcal{O}(\alpha \alpha_s^2)$  process at leading order,  $5 < Q^2 < 5000 \text{ GeV}^2, -1 < \eta_{\text{lab}} < 2.5, M_{3\text{jet}} > 25 \text{ GeV}$ 

• First comparison with NLO,  $\mathcal{O}(\alpha \alpha_s^3)$  calculation  $\blacksquare$  Good agreement over entire phase space region.

### **Three jet production – three-to-two jet rate**





- $R_{3/2}$  ratio of three to two jet cross sections.
- Large NLO corrections, Good agreement between data and NLO calculation.
- Reduced uncertainties and gluon in the proton and renormalisation scale.
- Interesting prospects for extraction of  $\alpha_s$ .

# **Charge current dijet production**



## **Summary and Outlook**

- HERA continues to produce a wealth of precision jet data at high  $E_T$  in deep inelastic scattering.
- Scale variation studied over many orders of magnitude in a single environment.
- The QCD coupling constant,  $\alpha_s$ , has been extracted with a statistical precision competitive with the world average.
- Theoretical uncertainties now dominate over most of the kinematic range.  $\blacksquare$  what is the appropriate scale,  $Q^2$ ,  $E_T^2$ ? Higher order or resummed calculations needed.
- NLO corrections and scale uncertainty large at low  $Q^2$ , and in the forward direction. Contribution from resolved photon at lower  $Q^2$  not yet clear.
- NLO QCD is able to describe the data at higher  $Q^2$  over many orders of magnitude.
- Look forward to meeting the challenge of the precision study of QCD at even higher scales with the upgraded HERA machine.