Improved measurements of the b quark mass at LEP

- Motivations to measure m_b at M_Z.
- Observables sensitive to m_b at M_Z .
- Experimental strategy.
- Systematic uncertainties.
- Results (DELPHI and OPAL).
- Conclusions.

María José Costa (IFIC-València) ICHEP 2002 Amsterdam

Motivations to measure m_b at M_Z

- Direct and independent measurement of the b mass at high energy.
- In the case of $m_b(\mu)$, test of the evolution with the scale.

• $m_b(M_Z)$ is a basic input parameter to test m_b-m_{τ} unification predicted by GUT models at $M_{GUT} \sim 10^{16}$ GeV.

Observables sensitive to m_b at M_Z

• Due to the mass effect, massive quarks radiate less gluons than light quarks.

- For inclusive observables, b mass effects are negligible at LEP $(m_b^2/m_Z^2 \le 0.3\%)$.
- For jet rates: $\exists y_c \rightarrow (m_b^2/m_Z^2)/y_c$ sizeable effects.
- The observable used:

$$R_n^{bl}(y_c) = \frac{\Gamma_{nj}^{Z^0 \to b\bar{b}(n-2)g}(y_c) / \Gamma_{tot}^{Z^0 \to b\bar{b}}}{\Gamma_{nj}^{Z^0 \to l\bar{l}(n-2)g}(y_c) / \Gamma_{tot}^{Z^0 \to l\bar{l}}}$$

NLO for
$$n = 3$$
 jets
LO for $n = 4$ jets

OPAL: n = 3 jets Jade, E0,P, P0, E,Geneva,Durham.

 $m_b(M_Z) \Leftrightarrow \alpha_s$ universality

27 July 2002

M.J. Costa

Experimental Strategy

27 July 2002

M.J. Costa

Systematic uncertainties

Detector and physics modelling:

Detector resolution.

- Tagging $(\tau_b, R_b, n_{ch}^{B-decays}, \varepsilon_{b,}, \varepsilon_c)$.
- gluon splitting rates.
- Tuning of the fragmentation parameters.

Hadronization:

- Model (string or cluster).
- b fragmentation function.
- b mass parameter in the generator.

DELPHI results

First look into 4 jets

Data lies between the LO predictions for $M_b = 3 - 4.8$ GeV.

Modelling of the generators

OPAL results

The 7 results of $m_b(M_Z)$ were combined:

 $m_b(M_Z) = 2.67 \pm 0.03 \,(\text{stat})^{+0.29}_{-0.37}(\text{syst}) \pm 0.19 \,(\text{theo})$

Conclusions

b mass effects have been measured with 4 jet events!
NLO calculations are welcome! All measurements of m_b(M_Z) are compatible.
The shift m_b(M_Y/2) -m_b(M_Z) has been observed with almost 4σ in agreement with the QCD prediction.

• The values obtained for M_b (~4.2 GeV) are lower than the ones obtained at low energy.

• A better understanding of the mass entering in the MC could lead to a precision on $m_b(M_Z)$ of about 250-300 MeV.