CHARM PRODUCTION at **HERA**

- Introduction
- Open charm production (in γp and DIS)
- J/ ψ production (in γp and DIS)
- Summary

vy Quarks in ep Collisions ?	n mechanism of heavy flavour (c,b)	t tests of pQCD predictions	urk masses to render pQCD more reliable.	urs as tool to independently :	density in proton	arton densities in the photon	standard processes	rbative phenomena: fragmentation	
Why Heavy Qua	• Study production mechanis	• Perform stringent tests of p	expect larger quark masses to	• Use heavy flavours as tool 1	 access gluon density in p 	 learn about parton densit 	 identify non-standard pr 	• Study non-perturbative phe	

Kinematics of Heavy Qu	ark Production
$e(l)$ $\gamma(q)$	ep CM-energy with s =(1+P) ² ntum transfer squared
$\mathbf{y} = \frac{qP}{lP}$: inelas	icity, γ -energy fraction $\Big _{Q^{2=0}}$
Kinematic regimes Photoproduction (Deep Inelastic Sca	γP); γ quasi on–shell : $Q^2 = 0$ tering (DIS): $1 < Q^2 < 5 \ 10^{-4}$ GeV
<u>Beams and luminosity:</u> electrons + protons: (beg 98-mid 99) positrons + protons: (mid 94- 1997, mid 99 - end 00)	: Lumi ~ 15 pb ⁻¹ ; : Lumi ~ 60–120 pb ⁻¹
Christoph Grab, ETHZ	ICHEP 02 July 2002 3

ICHEP 02 July 2002

OCD Calculations for Open Charm

LO and PS programs:

- AROMA: direct only, DGLAP evolution
- **PYTHIA, HERWIG:** direct and resolved, DGLAP
 - **CASCADE** : direct only, CCFM–like evolution

NLO calculations in pQCD:

- valid for $p_t \sim m_Q$; (FMNR, HVQDIS : Frixione *et al*, Harris+Smith) FO = fixed order, massive : HQ produced at perturbative level,
- RS = resummed, massless approach (for γp) : HQ is active flavour in p and γ ; resums contributions of large logarithms $(Q/m_0, p_{t/m_0})$ up to NLL; reliable for $p_t >> m_0$ (Kniehl, Kramer, Cacciari, ..)
 - FONLL: = matched calculations (for γp); => combination of FO (in lowp,) and RS(at large p_t); (Frixione, Nason, Cacciari)

: D – mesons Open charm

σ

July 2002

ICHEP 02

	2.4					.RF	10
: ZEUS	st one $D^* \rightarrow (K\pi) \pi$ (120 pb ⁻¹ Jets: E _T (jet) > 5 GeV; $ \eta(jets) < 3$	olved or direct contributions	nentum-fraction variable:	$\frac{E_{Jets}E_{T}e^{-\eta}}{2 y E_{e}} < 0.75; > 0.75$	ia, Herwig (incl. charm on graphs) describe data vell, (Cascade less well).	ijet angular distributions in e (jet–jet axis, beam axis) _{dijet} - ive to propagator type (q/g)	ICHEP 02 July 2002
agged Dijets	sociated with at leas (D) > 3. GeV; $ \eta(D) < 1.5;$	Enrich reso	by Y-mon	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	MC : Pyth excitations where we were strated of the strate	$\begin{array}{c c} & Study d\\ \bullet & \mathbf{Study d}\\ \bullet & stud$	
Charm T	Study dijets events as D* :p _t	ZEUS	 ZEUS (prel.) 1996-2000 PYTHIA 	3 - HERWIG CASCADE Z PYTHIA: Resolved	$2 - M_{jj} > 18 \text{ GeV}; \vec{\eta} < 0.7$ $1 - 1$	0 0.2 0.4 0.6	istonh Grab. ETHZ
	٩	ر sqo	xp/op o	J/ (Chri

	0.5 F Fit: $\varepsilon = 0.064 \pm 0.006_{-0.008}^{+0.011}$
--	--

ICHEP 02 July 2002 12

ICHEP 02 July 2002 13

D⁺ production in DIS : H

• H1 prel

 $D^+ \to K^{-} \pi^{+} \pi^{+}$

• H1 prel

dsc $v_{is} \wedge dQ^2$ [$nb \wedge GeV^2$] \dot{G}

7

 $d\sigma_{vis} \wedge dp_1$ [$nb \wedge GeV \wedge c$]

$D^+ \rightarrow K^- \pi^+ \pi^+$

• $2 < Q^2 < 100 \text{ GeV}^2$; 0.05 < y < 0.7 $p_t(D) > 2.5 \text{ GeV}$; $|\eta(D)| < 1.5$

$$\sigma_{vis}(ep \rightarrow eDX) = (2.16 \pm 0.19^{+0.46}) nl_{-0.35}$$

Q² [GeV²]

10

 \sim

10

2.5

ကု

 \dot{c}

10

10

AROMA (LO)

 $- c + 4.3 \cdot b$

-- 4.3·b

• H1 prel

=> norm of (2.45 ±0.30) nb and shapes well described by LO+PS predictions.

0.6

0.4

0.2

	Frag	mentati	on Ratios : H1
From => p	n measured produ production ratios	action cross of differen	sections, calculate t quark and spin states :
2	1.28±0.19±0.12 1.02±0.12 0.96+0.05+0.07	Hl prelim ALEPH	"u-d quark differences" R R = $(f^0 - f^+)/(2f^{*+}BR)$
₽≥	0.693±0.045±0.010 0.595±0.045	HI prelim ALEPH	"vector/pseudoscalar ratio" P_{Vd} $P_{Vd=} = f^{*+} / (f^+ + f^{*+} BR)$
\sim	0.36±0.10 ±0.08 0.31±0.07	Hl prelim LEP / ADO	"s–suppression factor" γ_{S} $\gamma_{S} = 2f_{S} / (f^{0} + f^{+})$
	0.27±0.05	ZEUS	$f^{X} = f(c \rightarrow D^{x}) BR = BR(D^{*} \rightarrow D^{o} \pi)$
⇒ finc	l agreement within	(similar) err	ors HERA <-> LEP
Christoph G	rab, ETHZ		ICHEP 02 July 2002 15

J/y Production M	echanism
NRQCD + factorization: $\sigma(\gamma p \rightarrow J/\psi) = \Sigma$	$\hat{\sigma}_{sD}(y \ p \rightarrow c \ \overline{c}[n] \ X) * LDME[n]$
 SD : short distance coefficients, calculable i LDME: long distance matrix elements, assume n : quantum numbers (colour state, ^{2S+1}L_J 	n pQCD d universal : FNAL -> HERA)
$ \begin{array}{c} $	
$\frac{\text{CSM} = \text{Colour Singlet Model [1, ^3S_1]}}{\text{colourless } c \overline{c} -\text{state formed by}}$ emission of hard gluon	CO contributions: [8, $^{2S+1}L_{J}$] J/ ψ formed from colour octett $c \overline{c}$ -pair by soft g emission
<u>Question:</u> what is the relative amount of different christoph Grab, ETHZ	ont contributions?

2 		ZEUS (c NZSZ (N 0.117 < c 1.3 < m _c	rel.) 96-97 LO, CS) <(M ₂) < 0.121 < 1.6 GeV KZSZ (LO, CS		y <mark>distribution at medi</mark> 0 < W < 180 GeV ZSZ = Kraemer et al	ium z
 		+●+ +●+ H	+ • +	ste C	S (LO) contribution tep	alone too
0,200	0.4 < z < 5	0.9	5 20 p ² (G	ev ²) (1a	M NLO describes p tribution pretty well rge) errors	,2 t,ψ within

(dn) yb\⊃b ∞ 6 4 6 5 ∞ 4	Inelastic J/v Photo ZEUS • ZEUS (prel.) 96-97 • KK (Lo, CS+CO) • KK (Lo, CS+CO) • A < z < 0.9 • p + 1 GeV	production : ZEUS Rapidity distribution: (KK : Kniehl + Kramer) (KK : Kniehl + Kramer) (KK : Kniehl + Kramer) (KK : Kniehl + Kramer) (KK : Kniehl + Kramer)
Christe	Phi Grab, ETHZ	 helps to further constrain models ICHEP 02 July 2002 20

ICHEP 02 July 2002 21

Summary
 <u>D - meson production</u> <u>PQCD predictions (FO, FONLL</u>) are getting pretty close to describe cross sections in shape; normalisations still somewhat too low fragmentation studies show NO differences between HERA and LEP dijet angular distribution show signature of gluon propagator -> "c in photon" first measurements with lifetime tags (D⁺); promising D* -muon correlations
 J/J production : many precise data in large range down to low z theoretical predicions show large uncertainties can describe data by "tuning" (CS + CO or + CSM NLO) BUT picture NOT clear yet
• HERA-II : larger statistics and improved detectors (vertex) will help to solve remaining puzzles

ICHEP 02 July 2002 22

D* - Muon Corr	elations in γp (opt)
• Tag BOTH quarks (c and cbar) and A Study events with one $D^* \rightarrow (K^{\pi})^{\pi}$	l reconstruct final state
• Correlate charge and separation $\Delta \phi$	of D* and μ to separate charm and beauty
+*O*+	+*Q
Frag.	
m y 2000 g 00000000	M. M. Bagaga
	a
Ψμ 🗸 S	m
Charm:	Beauty: three possibilities :
$\Delta \phi \approx 180^{\circ} ; \mathbf{Q}(\mathbf{D}^*) = - \mathbf{Q}(\mu)$	$\Delta \phi \approx 180^{\circ} ; Q(D^*) = -Q(\mu)$ $\Delta \phi \approx 180^{\circ} ; Q(D^*) = +Q(\mu)$
	$\Delta \phi \approx 0^{\circ} ; \ Q(D^*) = - \ Q(\mu)$
Christoph Grab, ETHZ	ICHEP 02 July 2002 24

ns in yp : H1 (opt)	ection in $(D^*\mu)$ – variables	• Approximate QQ-quantities by $(D^*\mu)$ - variables	• LO+PS Aroma describe shape reasonably well	II, e.g. gluon density extraction	ICHEP 02 July 2002 25
on Correlation	zed differential cross se	۱/۲ do/dy(D*µ, J) (D*µ)	[\l] ΦΔ b /ob o\r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	e potential for HERA-I	
D* – Mu	Measure normali	1/o do/dp ² (D*µ.) [1/(GeV/c) ²]	1/o do/dM(D*µ,) [1/(GeV/c ²)]	Statistics low -> large	Christoph Grab, ETHZ

e⁺p vs e⁻p D* production : ZEUS (opt)

0.02 < y < 0.8D* production in $1 < Q^2 < 1000 \text{ GeV}^2$;

 $\left|\eta(D)\right|<1.5$

\Rightarrow Small disagreement, unexpected, not explained

D meson tagging via decay length (opt)

Radial decay length significance $S_1 = 1/\sigma_1$ with $1 = p_t(D)$ ct^{*} / m_D

for tagged $D^0 \to K\pi\,$ candidates

H1 DATA

- S = signal shape from MC
- **b** B = background shape of data sideband
- Fit only relative normalisations
- #D consistent with direct mass-fits

⇒ good description over 3 decades, resolution + errors well under control

(**opt**) F **D* production vs NLU:**

Differential cross section :

 $\mathrm{D}^{*+}
ightarrow (\mathrm{K}^- \, \pi^+ \,) \pi^+$

Visible kinematic range:

- $2 < Q^2 < 100 \text{ GeV}^2$;
- 0.05 < y < 0.7
- $p_t(D) > 2.5. \text{ GeV}$
- $\bullet ||\eta(D)| < 1.5$

comparison with NLO HVQDIS for charm + scaled beauty (publ.) $(m_c=1.5; \epsilon_{pete}=0.036; \mu=\sqrt{(Q^2+4m) GRV98)}$

\Rightarrow good agreement Data \leftrightarrow NLC

Production cross sect	ions i	n DIS	: H1	(opt)	
Differential cross section: $D^+ \rightarrow K\pi\pi$;	$\mathrm{D}^0 ightarrow \mathrm{K}_{7}$	$\mathfrak{r}:\mathrm{D}^{*}\!\!\rightarrow$ ($(\mathrm{K}\pi) \pi;]$	$D_{s} \rightarrow (K)$	()
Visible kinematic range: $2 < Q^2 < 10$	0 GeV^2 ;	0.05 <	y < 0.7		
$p_t(D) > 2.5.$	GeV	μ(D)	< 1.5		
Cross section	D^+	D^0	D_s^+	D^{*+}	
$\sigma_{vis}(ep \to eDX) \text{ (nb)}$	2.16	6.53	1.67	2.90	
stat. error on σ_{vis}	± 0.19	± 0.49	± 0.41	± 0.20	
syst. error on σ_{vis}	+0.46 -0.35	$^{+1.06}_{-1.30}$	+0.54 - 0.54	+0.58 -0.44	
AROMA LO prediction σ_{vis}	2.45	5.54	1.15	2.61	

 \Rightarrow reasonable agreement Data \leftrightarrow LO MC within errors

 $\pm 0.30 | \pm 0.69 | \pm 0.30 | \pm 0.31$

error on prediction

30

Fragmentation Fractions in DIS : H1 (opt)

Fragmentation fractions (after subtracting b-contribution, and correcting for acceptances) : $f(c \rightarrow D) = [\sigma_{vis}(ep \rightarrow eDX) - \sigma^{MC}{}_{vis}(ep \rightarrow bb \rightarrow eDX)] \ / \ [\ \sigma^{MC}{}_{vis}(ep \rightarrow bb \rightarrow eDX) / f_{wa}(c \rightarrow D)] \ .$

Fragmentation factors	D^+	D^0	D_s^+	D^{*+}
f(c ightarrow D)	0.202	0.658	0.156	0.263
stat. error	± 0.020	± 0.054	± 0.043	± 0.019
syst. error	+0.045 -0.033	+0.117 -0.142	+0.036 -0.035	+0.056 -0.042
theo. error	+0.029 -0.021	+0.086 -0.048	+0.050 -0.046	+0.031 -0.022
$f_{w.a.}$ = world average	0.232 ± 0.018	0.549 ± 0.026	0.101 ± 0.027	0.235 ± 0.010

⇒ good agreement with world average

Christoph Grab, ETHZ

ICHEP 02 July 2002 31

1 (opt)	$f_{X} = f(c \rightarrow D^{X})$		$BR=BR(D^* \rightarrow D^0 \pi)$	compare with Alenh	Opal. Delphi.Zeus	~ ~ ~					=> HEKA <-> LEP	agree within errors				
	[1]	[2]		[3]	[3]	[1]		[3]	[1]	[2]		[4]		[5]		[9]
atio	A	D	H1	0	0	V	H1	0	Α	D	H1	ZEUS	H1	ADO	H1	ZEUS
n R		0.07	0.12				0.010			0.029	0.034	0.028	0.056		0.08	0.07
		-++	-+1				-++			-+1	-++	++	+1		-+1	-+1
<u>itat</u>	0.12	0.05	0.19	0.36	0.31	0.045	0.045	0.05	0.19	0.014	0.061	0.045	0.083	0.07	0.10	0.04
	++	$+\!\!\!+\!\!\!\!+$	+1	+1	+1	++	$+\!\!\!+\!\!\!\!+$	+1	++	+1	$+\!\!\!+\!\!\!\!+$	++	+1	++	+1	++
	1.02	0.96	1.28	1.19	0.94	0.595	0.693	0.57	09.0	0.620	0.613	0.546	0.549	0.31	0.36	0.27
	$R = \frac{f^0 - f^+}{2 \cdot f^* + \cdot BR}$			$R' = rac{f^0 - f^+}{f^{*0} - f^{*++2} \cdot f^{*++BR}}$	$R^*=rac{f^{*0}}{f^{*+}}$	$P_V^d = rac{f^{*+}}{f^{++f^{*+}\cdot BR}}$		$P_V^{u+d} = rac{f^{*0+f^{*+}}}{f^{0+f^+}}$	$P_V^s = rac{f_s^*}{f_s}$	$P_V^{\prime} = rac{2 \cdot f^{*+}}{f^{0+f+}}$		$P_V^{\dagger} = rac{f^{*+}}{f^{0-f^{*+}.BR}}$		$\gamma_s = \frac{2 \cdot f_s}{f^0 + f^+}$		γ_s^{\dagger}

ICHEP 02 July 2002 32

D-meson properties (opt)

ICHEP 02 July 2002 33

Dijets angular distributi	on : ZEUS (opt)
$\theta^* = \langle (jet-jet axis, beam axis)_{dijet-RI}$	F; $\cos \Theta \approx \tanh((\eta^{jetl} - \eta^{jet2})/2)$
is sensitive to propagator type (gluor	n/quark)
	ZEUS
 resolved contribution (LO) dominated by gluon exchange: 	$ \begin{array}{c c} & \bullet & \text{ZEUS (prel.) 1996-2000} \\ \hline \bullet & \bullet & \text{ZEUS (prel.) 1996-2000} \\ \hline \bullet & \bullet & \text{PYTHIA} & \bullet & p \rightarrow D^{*\pm} + \text{dijets} + X \\ \hline \bullet & \bullet & \text{HERWIG} & M_{ij} > 18 \text{ GeV }; \vec{\eta} < 0.7 \\ \hline \bullet & \bullet & \text{CASCADE} & M_{ij} > 18 \text{ GeV }; \vec{\eta} < 0.7 \\ \hline \bullet & \bullet & \text{CASCADE} & M_{ij} > 18 \text{ GeV }; \vec{\eta} < 0.7 \\ \hline \bullet & \bullet & \text{CASCADE} & M_{ij} > 18 \text{ GeV }; \vec{\eta} < 0.7 \\ \hline \bullet & \bullet & \text{CASCADE} & M_{ij} > 18 \text{ GeV }; \vec{\eta} < 0.7 \\ \hline \bullet & \bullet & \text{CASCADE} & M_{ij} > 18 \text{ GeV }; \vec{\eta} < 0.7 \\ \hline \bullet & \bullet & \text{CASCADE} & M_{ij} > 18 \text{ GeV }; \vec{\eta} < 0.7 \\ \hline \bullet & \bullet & \text{CASCADE} & M_{ij} > 18 \text{ GeV }; \vec{\eta} < 0.7 \\ \hline \bullet & \bullet & \text{CASCADE} & M_{ij} > 18 \text{ GeV }; \vec{\eta} < 0.7 \\ \hline \bullet & \bullet & \text{CASCADE} & M_{ij} > 18 \text{ GeV }; \vec{\eta} < 0.7 \\ \hline \bullet & \bullet & \text{CASCADE} & M_{ij} > 18 \text{ GeV }; \vec{\eta} < 0.7 \\ \hline \bullet & \bullet & \text{CASCADE} & M_{ij} > 18 \text{ CASCADE} \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet$
$=>$ stronger rise at large $ \cos(\theta^*) $	$\frac{1}{60.5} - \frac{1}{5}$
 direct contribution (LO) dominated by 	$1.5 - x_{\gamma}^{obs} > 0.75 - \frac{1}{2} + \frac{1}{2}$
quark exchange:	
$=$ milder rise at large $ \cos(\theta^*) $	
 signature of gluon exchange 	$0 \begin{bmatrix} 0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 \\ 0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
	ICHED 0.2 Indv 2002 34

54 July 2002 ICHEP 02 JAy Photoproduction : H1 (opt)

- $z=E^*_{\ \, W}\,/\,E^*_{\gamma}\,\left|_{p-rest\ frame}\right.$ • $p^2_{t,w}$ dependence similar at low z and medium z
 - CS (LO) contribution alone is too steep
- note: beauty contribution is not subtracted in data (at large $p^{2}_{t,\psi}$) CS+CO (LO) shows tendency to fall too steeply
- CSM NLO describes p²_{t, U} distribution pretty well (Kraemer) 0

J/y Photoproduction (opt)

powerful new data down to low z

 $z = E^*_{\psi} / E^*_{\gamma} |_{p-rest \ frame}$

- large theoretical uncertainties
- Improved calculations at HO describe shape, but not norm (Kniehl+Kramer)
- fair description in z-range by CS+CO LO with small LDME (Kraemer+Cacciari)
- Add CO + resummation of soft contrib. (shape f) help (BSW:Beneke,Schuler,Wolf)
- CSM NLO (direct only) describes data well within errors (KZSZ= Kraemer ...)