

Isolated Prompt Photon Production in Photon-Photon Collisions at $\sqrt{s_{ee}}$ =183-209 GeV

T. Schörner-Sadenius on behalf of the OPAL Collaboration

ICHEP 2002, Amsterdam 23-31 July 2002

'Prompt' = not coming from particle decays/fragmentation, but emitted from the hard underlying scattering.

- Allow to study photon's hadronic structure and test QCD predictions:
 - Prompt γ appear in resolved processes (in LO; in NLO also in direct events).
 - Small NLO corrections / scale dependency.
 - 'Cleaner' than dijets (hadrons, D*) \rightarrow less uncertainty from hadronisation (but prompt γ have smaller Xsection $\sim O(\alpha_{EM})$).
- Might further be used for
 - studies of the underlying parton picture or
 - background studies in LHC Higgs searches.

Theoretical Predictions

- Fixed-order NLO QCD calculations (Fontannaz et al).
- PYTHIA 6.130 for signal $\gamma\gamma \rightarrow \gamma + X$
 - Distinct samples for single/double resolved for three energy points.
 - Sas-1D (LO) γ PDF.
- Background with fake / real γ :
 - PHOJET 1.10 and HERWIG 5.9 for γγ background without prompt γ.
 - Also Vermaseren 1.0, PYTHIA 5.7, KORALZ, grc4f.

Schörner-Sadenius: Prompt Photons in yy

Single-resolved

Double-resolved

LEP and the OPAL Detector

Event/ γ Selection ($\sqrt{s_{ee}}$ =183-209 GeV)

- Require \geq 3 tracks. Reject events with scattered leptons above θ =33 mrad.
- Reject e+e- annihilations:
 - 5 GeV < W_{vis} < 0.3 $\sqrt{s_{ee}}$
 - $E_{cal} < 0.25 \sqrt{s_{ee}}$.
- Select isolated photons:
 - EM clusters with $|\eta| < 1$ and $p_T > 3$ GeV.
 - Photon and hadronic final state balanced in φ.

Schörner-Sadenius: Prompt Photons in $\gamma\gamma$

Photon Selection ctď

Isolation criterion (δ<R):</p> $\Sigma_{i} \mathsf{E}_{\mathsf{T}i} \cdot \Theta(\delta - \mathsf{R}_{iv}) \leq$ $0.2 \cdot E_{T_v}(1 - \cos \delta)/(1 - \cos R)$ **Background:** antineutrons, η/π^0 decays \rightarrow shape analysis: $f_{max} = E_{max}/E_{v}$ $\sigma_{c} = (\Sigma_{i} E_{i} R_{iv}) / E_{v}$ $q(f, \sigma) = aq^{\gamma} + bq^{\pi} +$ $(1-a-b)\cdot(cq^{n} + (1-c)q^{\eta})$ Fit: a = 0.85 ± 0.08 (stat) $b = 0.11 \pm 0.08$ (stat)

Schörner-Sadenius: Prompt Photons in yy

Single/Double Resolved Ratio $r_{s/d}$

- Fit x_{γ}^{min} distribution to data $\rightarrow r_{s/d} = 0.59 \pm 0.12$
- For the complete data set use also $x_T = 2p_T^{\gamma}/W_{vis}$ $\rightarrow r_{s/d} = 0.41 \pm 0.08$,
- Average $\rightarrow r_{s/d} \sim 0.5$.

For isolated prompt photons (p_T > 3 GeV, $|\eta^{\gamma}| < 1$):

$$\sigma_{tot} = \mathbf{r} \cdot \mathbf{N}_{prompt} / \varepsilon_{single} \mathbf{L} + (1-\mathbf{r}) \cdot \mathbf{N}_{prompt} / \varepsilon_{double} \mathbf{L}$$

- N_{prompt} : 92.8, background subtracted (FSR, π , η , n).
- r_{s/d}: single / double resolved ratio.
- ε: Taken from PYTHIA MC (0.51 / 0.61).

$$\sigma_{tot} = 0.26 \pm 0.04$$
 (stat.) ± 0.03 (syst.) pb

•Tristan: $\sigma(p_T > 2GeV) = 1.72 \pm 0.67$ pb at $\sqrt{s_{ee}} = 58$ GeV

Comparisons with PYTHIA

→ Shape of distributions well described, but normalisation off (1.85; in case of TOPAZ ~3, MC also low for ZEUS)

ICHEP02 Amsterdam

Schörner-Sadenius: Prompt Photons in yy

Comparisons with NLO Calculations

Shape and normalisation correct (Fontannaz et al)!

ICHEP02 Amsterdam

Schörner-Sadenius: Prompt Photons in yy

Summary

- Prompt photons provide means to test QCD and to determine hadronic structure of photon. σ = 0.26 ± 0.04 (stat.) ± 0.03 (syst.) pb
- PYTHIA badly normalized; good agreement of differential cross-sections with NLO QCD calculations.
- Looking forward to final result:
 - Test of different photon PDFs (GRV, LAC1).
 - Investigate including FSR in signal → better NLO description?