

HIGH ENERGY PHYSICS AMSTERDAM

α_s measurements from event shapes and 4 jets

G. Dissertori

ETH Zürich

Content

- Introduction
- Event shapes
- α_s fits
- Systematic errors

- LEP combination
- Power law corrections
- α_s from 4-jet rate
- Conclusions

Introduction

e⁺e⁻ annihilation into hadrons:
typical numbers (per experiment)

Е _{см} [GeV]	∫Ldt [pb ⁻¹]	# evts	bckg fraction
91	100	> 10 ⁶	few ‰
133	12	800	few ‰
161	11	300	5%
172	10	250	10%
183	60	1300	12%
189	170	3500	13%
200	200	3500	14%
206	210	3500	15%

Selection issues :

- □ ISR, 4-fermion background (WW,ZZ)
- □ Many energy points, some combined into single point (eg. 204-209 \Rightarrow 206 GeV)

27/07/02

00000

INTERNATIONAL CONFERENCE

Event Shapes

Further variables : heavy jet mass M_H , C-parameter C, total and wide jet broadenings B_T and B_W , diff. 2-jet rate (Durham, y_3) $\frac{27/07/02}{G. Dissertori - ETHZ}$ 4

Measurements

- Typically measured from charged and neutral particles
- Corrected for acceptance, resolution, residual ISR contamination
- 4-fermion background subtracted
- in general good description of data by MCs

NLO O(α_s^2) pQCD prediction for event shape variables

 α_{s} Fits

y event-shape variable $\frac{1}{\sigma}\frac{d\sigma}{dy} = \alpha_{\rm S}(\mu^2)A(y) + \alpha_{\rm S}^2(\mu^2)B(y,\mu^2)$ μ renormalisation scale

NLLA (resummed) prediction

 $R(y) = \mathcal{F}(\alpha_{S}) e^{Lg_{1}(\alpha_{S}L) + g_{2}(\alpha_{S}L)}$ leading (g_{1}) and sub-leading $\log (g_{2})$ to all orders in α_{S} $L = \log \frac{1}{y}, R(y) = \int \frac{1}{\sigma} \frac{d\sigma}{dy}$

- Two matching schemes to combine $O(\alpha_s^2)$ and resummed predictions, LogR and R.
- LEPQCD WG adopts modified matching schemes, which ensure physical behaviour at the phase space boundary y_{max}

$$L \to \tilde{L} = \frac{1}{p} \ln \left(\left(\frac{1}{y} \right)^p - \left(\frac{1}{y_{max}} \right)^p + 1 \right) \qquad \substack{p=1 \text{ modified LogR} \\ p=2 \text{ second degree modification}}$$

pQCD predictions corrected for hadronization using MC (PY, HW, AR) 27/07/02 G. Dissertori - ETHZ 6

Fit Results

27/07/02

G. Dissertori - ETHZ

Experimental Uncertainties

- track reconstruction, event selection, detector corrections : via cut variations or different MC generators
- □ background subtraction (LEP2)
- □ ISR corrections (LEP2)
- typically around 1%

Hadronization Uncertainties

- difference between various models for hadronization : Pythia (String frag.), Herwig (Cluster frag.), Ariadne (Dipole model + String frag.)
- \square typically around 0.7 1.5 %

Theoretical Uncertainties (pQCD)

□ LEPQCD WG has come up with a new prescription :

Uncertainty band method

Theoretical Uncertainty

- Uncertainty band obtained (for fixed α_s) via variations:
 - renormalization scale
 - □ rescaling factor L'=1/ln($x_L y$)
 - \Box kinematic constraint y_{max}
 - modification degree
- for fixed reference prediction (LogR) find α_s variation which covers this band (within the fit range)
- typically 3.5 5 %

27/07/02

Combined Result

27/07/02

G. Dissertori - ETHZ

Power Law Corrections

 Delphi has updated their study of power law corrections :

$$\langle y \rangle = \alpha_s (\mu^2) A + \alpha_s^2 (\mu^2) B + C \frac{\alpha_0 (\mu_I^2)}{Q}$$

 $\begin{array}{l} \alpha_{\rm s}({\rm M_{Z}}) = 0.1184 \pm 0.0004 \ ({\rm stat}) \\ \pm 0.0008 \ ({\rm exp}) \\ \pm 0.0008 \ ({\rm had}) \\ \pm 0.0031 \ ({\rm scale}) \end{array}$

$\textbf{=0.1184} \pm \textbf{0.0033}$

4-jet rate

$$x_{\mu} = 0.729 : \alpha_{s}(M_{z}) = 0.1175 \pm 0.0013$$

a previous conf.

- α_s measured from event-shape variables at LEPI and LEPII, new LEP average
- new method for estimating theoretical uncertainties
- very precise measurements also obtained using mean values together with power law corrections, as well as the 4-jet rate

Theoretical Uncertainty

- Uncertainty band obtained (for fixed α_s) via variations:
 - □ renormalization scale
 - □ rescaling factor L'=1/ln($x_L y$)
 - kinematic constraint
 - modification degree
- for fixed reference prediction (LogR) find α_s variation which covers this band (within the fit range)
 - typically 3.5 5 %

LEP results

Q	α _s (Q)	stat	exp	hadr	theo
41.4	0.1415	0.0024	0.0027	0.0018	0.0077
55.3	0.1260	0.0023	0.0049	0.0045	0.0067
65.4	0.1332	0.0015	0.0031	0.0041	0.0061
75.7	0.1190	0.0012	0.0051	0.0045	0.0056
82.3	0.1174	0.0013	0.0037	0.0051	0.0055
85.1	0.1140	0.0018	0.0041	0.0051	0.0056
91.2	0.1197	0.0002	0.0008	0.0010	0.0048
133.0	0.1134	0.0016	0.0012	0.0010	0.0045
161.0	0.1080	0.0025	0.0014	0.0003	0.0043
172.0	0.1046	0.0029	0.0017	0.0006	0.0040
183.0	0.1076	0.0013	0.0008	0.0007	0.0038
189.0	0.1089	0.0008	0.0009	0.0006	0.0037
200.0	0.1074	0.0009	0.0010	0.0006	0.0036
206.0	0.1073	0.0009	0.0008	0.0005	0.0034

4-jet rate

27/07/02

G. Dissertori - ETHZ

4-jet rate

DELPHI NLO 4-jet rate, EOS Method

Durham: $\alpha_s = 0.1178 \pm 0.0012(exp) \pm 0.0023$ (hadr) $\pm 0.0014(scale)$

Cambridge: α_s = 0.1175 ± 0.0010(exp) ± 0.0017 (hadr) ± 0.0007(scale)

27/07/02

G. Dissertori - ETHZ