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SUMMARY:

Extending previous works on the spec-
trum of QCD9, we now investigate the
2D analogue of meson-baryon scatter-
mng.

We use semi-classical methods, per-
turbing around classical soliton solutions.

In the case of one flavor, we find that
the effective potential is reflectionless.

In the case of several flavors, the method
yields a potential which depends on the
momentum of the incoming particle.

In this case there is both transmission
and reflection.

In both cases no resonances appear.



GENERAL:

In 141 dimensions it is often possi-
ble to obtain analytic solutions. Thus
instead of studying an approximate ef-
fective action in 341 dimensions, one
can analyze the exact effective action in
1+1 dimensions.

For many purposes it is useful to have
a strong analytic grip on the 1+1 di-
mensional analogues of the problems in
3+1 dimensions.

For References see hep-ph /0206001,
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The physical picture of baryons com-
posed of constituent quark solitons was
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and M. Karliner, Nucl. Phys. B 382,
189 (1992)



Here we will compute the meson-baryon
scattering in QCD9 at strong coupling,
following the techniques of

M. P. Mattis and M. Karliner, Phys.
Rev. D 31, 2833 (1985)

applied to the bosonized action

Y. Frishman and J. Sonnenschein, Phys.
Rept. 223, 309 (1993)



FORMULATION:

QCD in 141 dimensions, bosonized in
the scheme

| SUiNC) N < LRy,

18
Slg, h, Ay A_] = NeSlg] + N¢S|h]

+5E [ d% Tre |i (A4ho-ht + A_hto.h)]
—3E [z Tre (ArhA-RF — A_A,)
+m’2N,;ﬁ | d2x Tr (g h+ ki gT)

where
m'_2 =mqgCm
m is to be fixed, C' = €7 ~ 0.891,
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Slu] = Swzwlu) = 517 | d?z Tr (aﬂu(?“uf)
—l—T%%' f d3y €k Tr

(- 105u) (u05u) (u~'04u)]

In the strong coupling limit

ec/mg — 00,

Sy = NeSlgl+m2Nm, [ &z (Trg + Trgt)

AV
m = {NchQ (ec\/—\/z—i\;r}-)

1
1+Ac

A N2-1
¢ Nc(Nc+NF)
Equation of motion, as coefficient of

(69)9",
e, [(0-g) o] +m? (9-gt) =0




Expanding in small fluctuations around
a given static classical solution

g = e_i(bC(x) e_igé(xat)
~s e~ 1%el(2) — je=iPel®)§ (1, ¢)
Equations of motion,

%’&r [e_@c(’”) (8_5q§(:c, t)) eiq)c(g’)]

+m? [e"wc(w)gqb(aj, t) + op(z, t)ei%(m)}
= §
Choose ®.(x) to have only the 11 en-

try non-zero, which we denote as ¢.(z).
Then

pe(z)" — SFEm? sin ¢ = 0

¢c(x) = darctg (el?) 0n=m %TZE



ONE FLAVOR:

Denote this case by d¢ 4, where the
subscript “A” stands for “Abelian”.

Then

5g = —idgA(x)e” 1%l

(8¢ 4 + p?(cos gc)dpa =0

C0S P = [1 - COS_}?Q ;u,x]

Get

Lo=3 (%MA)Q — V() (66.4)°

V(z) = 12 cos ¢e() = 112 [1 — ——%——-]
Take

5 alz,t) = e "“ix 4(x)
Then

—wixa— Xy +V(r)xa=0
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When z — 00, the potential — 2,
and so

X'} (F00)+w? x 4(F00) = p? x 4(F00)

Take

X A(E) == 5| 00 €

which results in

wz — 2 =+ #2

It turns out that for the particular po-

tential above, there is no reflection at
all. The transmission T is

T = ¢t
ials kB
ct25 -

+=ikx

d varies smoothly and decreases mono-
tonically from d =matk=0t0 0 =0
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For ACTIONS that lead to solitons
with potentials of NO-REFLECTION,
see paper.
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MULTI-FLAVOR CASE:

5¢—i (94 @) (0- 5¢) i ( 5(;5) (8,c)

; 2 [5¢6 io(z) 4 il )qu] _____

The equation for 5¢,,;j with 7,7 # 118
like for the free case

¢ +u25¢w —0, iand j £ 1

ment is like in the abehan case
0611 + p? (cos pe(x)) 0611 =0
with no reflection and no resonance.

So in order to proceed beyond these
results, we need to consider d¢y 5, j # 1,

or dbi1, 1 # 1. As ¢ is hermitean, it is
sufficient to discuss one of the above.
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Thus we take

01 = e "“huj(x) j#1
resulting in

(@) — i)+

[wz + wl(z) — §u° (1 + ewc(*’”))} ui(z)
=0

Define

3(!)
. C .
u]_..e? V;

Then
'U’ '

[w + wel, — 12 (1+ cos de) + 7 () 2] v
= {

Using

5 (0h)? = 1? (1 —cos gc)

13



we get
’U;-, + [wz + wel, — ;1,2 COS qbc} v; =0
or

—v;-’ — wz'vj +V(x)v; =0

where
V(z) = —wél, + p cos dc

-2 2 [ (w/p) 1
=4 - [COSh HT T cosh? p,:c]

with w = v/k2 + p? as before. Note
that the potential depends on the mo-
mentum of the incoming particle.
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NUMERICAL RESULTS:

T is the transition amplitude and R
is the reflection amplitude, with

T” +|R|* =1

We take

vj(r) = TekT 1 — +oo

vi(z) = " 4 Re T g 5 — o0

Since the potential is symmetric, the
symmetric and anti-symmetric scatter-
ing amplitudes don’t mix, yielding two
independent phase shifts dg and d 4, re-
spectively. This leads to

T = % (6655 + ei‘sA)

R = % (ei53 T 6?:514)
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Define

61 = 5 (35%04)

Then

T = €'+ cos §_

R = ie"+sind_

Note that R/T is purely imaginary.

The transmission and reflections prob-
abilities are

IT|? = cos? 6
|R|? = sin?6_
The numerical results for the trans-

mission probability |T|? and for the phase
of T', 61 are presented in Figs 1 and 2.

For comparison and as an extra check
we also plot the WKB result for 0.
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Note that no resonance appears.

Note also that the asymptotic value of
the phase shift is 7. This can also be ob-
tained from a WKB calculation, which
becomes exact at infinite energies.
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