# SCATTERING AND RESONANCES IN QCD $_2$

# ICHEP, AMSTERDAM, 25 JULY 2002

#### Yitzhak Frishman

Department of Particle Physics Weizmann Institute of Science 76100 Rehovot, Israel

and

#### Marek Karliner

School of Physics and Astronomy
Raymond and Beverly Sackler
Faculty of Exact Sciences
Tel Aviv University, Tel Aviv, Israel

#### SUMMARY:

Extending previous works on the spectrum of QCD<sub>2</sub>, we now investigate the 2D analogue of meson-baryon scattering.

We use semi-classical methods, perturbing around classical soliton solutions.

In the case of one flavor, we find that the effective potential is reflectionless.

In the case of several flavors, the method yields a potential which depends on the momentum of the incoming particle.

In this case there is both transmission and reflection.

In both cases no resonances appear.

# GENERAL:

In 1+1 dimensions it is often possible to obtain analytic solutions. Thus instead of studying an approximate effective action in 3+1 dimensions, one can analyze the exact effective action in 1+1 dimensions.

For many purposes it is useful to have a strong analytic grip on the 1+1 dimensional analogues of the problems in 3+1 dimensions.

For References see hep-ph/0206001.

The Baryon spectrum of QCD<sub>2</sub> for general  $N_f$  and  $N_c$  was computed in

G. D. Date, Y. Frishman and J. Sonnenschein, Nucl. Phys. B 283, 365 (1987)

Y. Frishman and J. Sonnenschein, Nucl. Phys. B **294**, 801 (1987)

The  $\bar{q}q$  content of baryons was calculated in

Y. Frishman and M. Karliner, Nucl. Phys. B **344**, 393 (1990).

The physical picture of baryons composed of constituent quark solitons was obtained in

J. R. Ellis, Y. Frishman, A. Hanany and M. Karliner, Nucl. Phys. B **382**, 189 (1992)

Here we will compute the meson-baryon scattering in QCD<sub>2</sub> at strong coupling, following the techniques of

M. P. Mattis and M. Karliner, Phys.

Rev. D **31**, 2833 (1985)

applied to the bosonized action

Y. Frishman and J. Sonnenschein, Phys.

Rept. 223, 309 (1993)

# FORMULATION:

QCD in 1+1 dimensions, bosonized in the scheme

is 
$$S[g,h,A_{+}A_{-}] = N_{c}S[g] + N_{f}S[h]$$

$$-\frac{1}{2e_{c}^{2}}\int d^{2}x \operatorname{Tr}_{c}F_{\mu\nu}F^{\mu\nu}$$

$$+\frac{N_{F}}{2\pi}\int d^{2}x \operatorname{Tr}_{c}\left[i\left(A_{+}h\partial_{-}h^{\dagger}+A_{-}h^{\dagger}\partial_{+}h\right)\right]$$

$$-\frac{N_{F}}{2\pi}\int d^{2}x \operatorname{Tr}_{c}\left[i\left(A_{+}hA_{-}h^{\dagger}-A_{-}A_{+}\right)\right]$$

$$+m'^{2}N_{\widetilde{m}}\int d^{2}x \operatorname{Tr}_{c}\left(A_{+}hA_{-}h^{\dagger}-A_{-}A_{+}\right)$$

$$+m'^{2}N_{\widetilde{m}}\int d^{2}x \operatorname{Tr}_{c}\left(gh+h^{\dagger}g^{\dagger}\right)$$
where
$$m'^{2}=m_{q}C\widetilde{m}$$

$$\widetilde{m} \text{ is to be fixed, } C=e^{\gamma}\approx 0.891,$$

$$S[u] \equiv S_{WZW}[u] = \frac{1}{8\pi} \int d^2x \operatorname{Tr} \left( \partial_{\mu} u \partial^{\mu} u^{\dagger} \right)$$

$$+ \frac{1}{12\pi} \int_{B} d^3y \, \epsilon_{ijk} \operatorname{Tr}$$

$$\left[ \left( u^{-1} \partial_{i} u \right) \, \left( u^{-1} \partial_{j} u \right) \, \left( u^{-1} \partial_{k} u \right) \right]$$
In the strong coupling limit 
$$e_{c} / m_{q} \to \infty,$$

$$S_{ef} = N_{c} S[g] + m^{2} N_{m} \int d^{2}x \, \left( \operatorname{Tr} g + \operatorname{Tr} g^{\dagger} \right)$$

$$m = \left[ N_{c} C m_{q} \left( \frac{e_{c} \sqrt{N_{f}}}{\sqrt{2\pi}} \right)^{\Delta_{c}} \right]^{\frac{1}{1+\Delta_{c}}}$$

$$\Delta_{c} = \frac{N_{c}^{2} - 1}{N_{c}(N_{c} + N_{F})}$$
Equation of motion, as coefficient of 
$$(\delta g) g^{\dagger},$$

$$\frac{N_{c}}{4\pi} \partial_{+} \left[ (\partial_{-} g) g^{\dagger} \right] + m^{2} \left( g - g^{\dagger} \right) = 0$$

Expanding in small fluctuations around a given static classical solution

$$g = e^{-i\Phi_c(x)} e^{-i\tilde{\delta}\phi(x,t)}$$

$$\approx e^{-i\Phi_c(x)} - ie^{-i\Phi_c(x)}\tilde{\delta}\phi(x,t)$$

Equations of motion,

$$\frac{N_c}{4\pi} \partial_+ \left[ e^{-i\Phi_c(x)} \left( \partial_- \tilde{\delta}\phi(x,t) \right) e^{i\Phi_c(x)} \right] 
+ m^2 \left[ e^{-i\Phi_c(x)} \tilde{\delta}\phi(x,t) + \tilde{\delta}\phi(x,t) e^{i\Phi_c(x)} \right] 
= 0$$

Choose  $\Phi_c(x)$  to have only the 11 entry non-zero, which we denote as  $\phi_c(x)$ . Then

$$\phi_c(x)'' - \frac{8\pi}{N_c} m^2 \sin \phi_c = 0$$

$$\phi_c(x) = 4 \arctan(e^{\mu x}), \qquad \mu = m \sqrt{\frac{8\pi}{N_c}}$$

# ONE FLAVOR:

Denote this case by  $\delta \phi_A$ , where the subscript "A" stands for "Abelian".

Then

$$\delta g = -i\delta\phi_A(x)e^{-i\phi_C(x)}$$

$$\Box \delta\phi_A + \mu^2(\cos\phi_C)\delta\phi_A = 0$$

$$\cos\phi_C = \left[1 - \frac{2}{\cosh^2\mu x}\right]$$

Get

$$\mathcal{L}_{\text{\tiny eff}} = \frac{1}{2} \left( \partial_{\mu} \delta \phi_A \right)^2 - \frac{1}{2} V(x) \left( \delta \phi_A \right)^2$$

$$V(x) = \mu^2 \cos \phi_c(x) = \mu^2 \left[ 1 - \frac{2}{\cosh^2 \mu x} \right]$$

Take

$$\delta \phi_A(x,t) = e^{-i\omega t} \chi_A(x)$$

Then

$$-\omega^2 \chi_A - \chi_A'' + V(x)\chi_A = 0$$

When  $x \to \pm \infty$ , the potential  $\to \mu^2$ , and so

$$\chi_A''(\pm\infty) + \omega^2 \chi_A(\pm\infty) = \mu^2 \chi_A(\pm\infty)$$
  
Take

$$\chi_A(x) \longrightarrow_{|x| \to \infty} e^{\pm ikx}$$

which results in

$$\omega^2 = k^2 + \mu^2$$

It turns out that for the particular potential above, there is no reflection at all. The transmission T is

$$T = e^{i\delta}$$
$$\operatorname{ctg} \frac{1}{2}\delta = \frac{k}{\mu}$$

 $\delta$  varies smoothly and decreases monotonically from  $\delta = \pi$  at k = 0 to  $\delta = 0$  at  $k = \infty$ . Thus there is no resonance.

For ACTIONS that lead to solitons with potentials of NO-REFLECTION, see paper.

MULTI-FLAVOR CASE:

$$\Box \tilde{\delta} \phi - i \left( \partial_{+} \Phi_{c} \right) \left( \partial_{-} \tilde{\delta} \phi \right) + i \left( \partial_{-} \tilde{\delta} \phi \right) \left( \partial_{+} \Phi_{c} \right)$$

$$+ \frac{1}{2} \mu^{2} \left[ \tilde{\delta} \phi e^{-i \Phi_{c}(x)} + e^{i \Phi_{c}(x)} \tilde{\delta} \phi \right] = 0$$

The equation for  $\tilde{\delta}\phi_{ij}$  with  $i, j \neq 1$  is like for the free case

 $\Box \tilde{\delta} \phi_{ij} + \mu^2 \tilde{\delta} \phi_{ij} = 0$ , i and  $j \neq 1$ whereas the i = 1, j = 1 matrix element is like in the abelian case

 $\Box \tilde{\delta} \phi_{11} + \mu^2 (\cos \phi_c(x)) \, \tilde{\delta} \phi_{11} = 0$  with no reflection and no resonance.

So in order to proceed beyond these results, we need to consider  $\tilde{\delta}\phi_{1j}$ ,  $j \neq 1$ , or  $\tilde{\delta}\phi_{i1}$ ,  $i \neq 1$ . As  $\tilde{\delta}\phi$  is hermitean, it is sufficient to discuss one of the above.

Thus we take

$$\tilde{\delta}\phi_{1j} = e^{-i\omega t}u_j(x) \qquad j \neq 1$$

resulting in

$$u_j''(x) - i\phi_c'(x)u_j'(x) +$$

$$\left[\omega^2 + \omega\phi_c'(x) - \frac{1}{2}\mu^2 \left(1 + e^{i\phi_c(x)}\right)\right]u_j(x)$$

$$= 0$$

Define

$$u_j \equiv e^{\frac{i}{2}\phi_c} v_j$$

Then

$$v_j'' + \left[\omega^2 + \omega\phi_c' - \frac{1}{2}\mu^2 \left(1 + \cos\phi_c\right) + \frac{1}{4}\left(\phi_c'\right)^2\right] v_j$$

$$= 0$$

Using

$$\frac{1}{2} \left( \phi_c' \right)^2 = \mu^2 \left( 1 - \cos \phi_c \right)$$

we get 
$$v_j'' + \left[\omega^2 + \omega\phi_c' - \mu^2 \cos\phi_c\right] v_j = 0$$
 or 
$$-v_j'' - \omega^2 v_j + V(x)v_j = 0$$
 where 
$$V(x) = -\omega\phi_c' + \mu^2 \cos\phi_c$$
$$= \mu^2 - 2\mu^2 \left[\frac{(\omega/\mu)}{\cosh\mu x} + \frac{1}{\cosh^2\mu x}\right]$$

with  $\omega = \sqrt{k^2 + \mu^2}$  as before. Note that the potential depends on the momentum of the incoming particle.

# NUMERICAL RESULTS:

T is the transition amplitude and R is the reflection amplitude, with

$$|T|^2 + |R|^2 = 1$$

We take

$$v_j(x) = Te^{ikx}, \ x \to +\infty$$

$$v_j(x) = e^{ikx} + Re^{-ikx}, \ x \to -\infty$$

Since the potential is symmetric, the symmetric and anti-symmetric scattering amplitudes don't mix, yielding two independent phase shifts  $\delta_S$  and  $\delta_A$ , respectively. This leads to

$$T = \frac{1}{2} \left( e^{i\delta_S} + e^{i\delta_A} \right)$$

$$R = \frac{1}{2} \left( e^{i\delta_S} - e^{i\delta_A} \right)$$

Define

$$\delta_{\pm} = \frac{1}{2} \left( \delta_S \pm \delta_A \right)$$

Then

$$T = e^{i\delta_+} \cos \delta_-$$

$$R = ie^{i\delta_+} \sin \delta_-$$

Note that R/T is purely imaginary.

The transmission and reflections probabilities are

$$|T|^2 = \cos^2 \delta_-$$

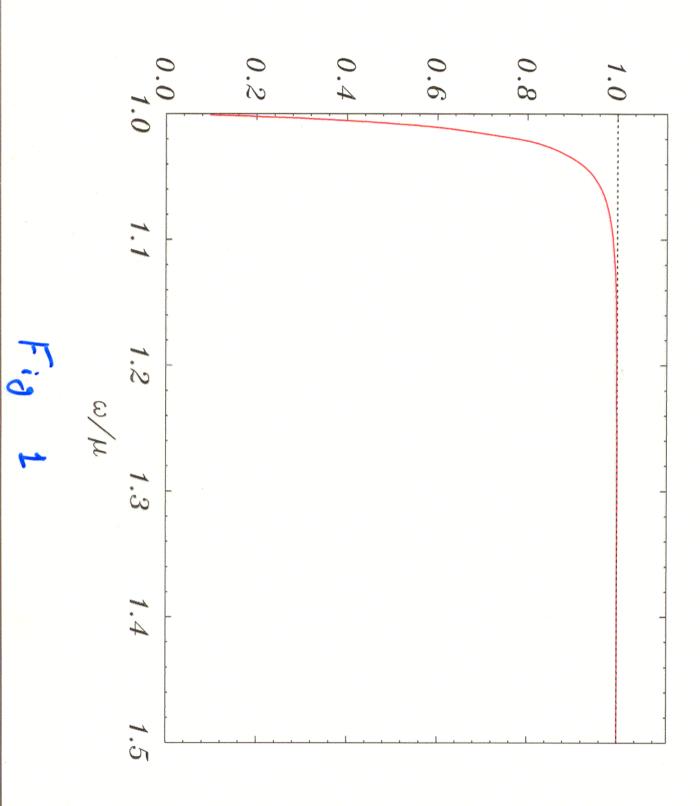
$$|R|^2 = \sin^2 \delta_-$$

The numerical results for the transmission probability  $|T|^2$  and for the phase of T,  $\delta_+$  are presented in Figs 1 and 2.

For comparison and as an extra check we also plot the WKB result for  $\delta_+$ .

Note that no resonance appears.

Note also that the asymptotic value of the phase shift is  $\pi$ . This can also be obtained from a WKB calculation, which becomes exact at infinite energies.



A

