Colour Reconnection Effects in WW Production at LEP

ICHEP02 Amsterdam, Netherlands 25th - 31st July 2002

> Evelina Bouhova-Thacker Lancaster University E-mail: e.bouhova@cern.ch

Abstracts: 226, 341, 343, 385, 390 and 460

WW at LEPII

Produced in e^+e^- collisions $\sqrt{s} > 161 \text{ GeV}$ ALEPH, DELPHI, L3 and OPAL (ADLO) each collected ~10,000 WW pairs

from 161 GeV to 209 GeV

 $\Gamma(WW \to q\bar{q}q\bar{q}) \sim 46\%$ $\Gamma(WW \to q\bar{\ell}\nu q) \sim 44\%$ $\Gamma(WW \to \ell\nu\ell\nu) \sim 10\%$

W lifetime ~ 0.1 fm/c QCD hadronisation scale ~ 1 fm \Rightarrow may not hadronise independently \Rightarrow colour reconnection (rearrangement)

Colour Reconnection

 \rightarrow Might affect multiplicity and particle kinematics.

 \rightarrow Might affect the W mass reconstruction.

Can occur in the:

• Perturbative phase: small effects

Z.Phys. C62 (1994) 281

- Non-perturbative phase:
 - Various models exist...

Models for Colour Reconnection

• JETSET CR SK I, II and II'

Cannot be tuned at the Z^0

- SKI \rightarrow flux tubes, $P_{reco} = 1 e^{-\kappa_I V_{overlap}}$
- SKII and SKII' \rightarrow vortex lines reconnection if strings cross
- CR minimises string length (reduces multiplicity)
- JETSET CR GAL
 - $P_{reco} = R_0 (1 e^{-b\Delta A})$

 ΔA - area difference between the two configurations (in energy-momentum coordinates), $R_0 \sim 1/N_C^2 \sim 0.1$

- Reduction in multiplicity
- ARIADNE CR
 - Gluons E < 2 GeV reconnect the W's (AR2)
 - Reduction in multiplicity
- HERWIG CR
 - CR occurs if cluster *size* can be reduced
 - Cluster mass determines multiplicity increase

WW Multiplicity - ALEPH update

Measure the charged particle multiplicities in fully hadronic (4q)and semi-leptonic (2q) events in data and compare 4q - 2(2q)

Experiment	$\sqrt{s} \mathrm{GeV}$	4q - 2(2q)
ALEPH*	189-207	$0.31 \pm 0.23 \pm 0.10$
DELPHI	183-189	$-0.26 \pm 0.60 \pm 0.38$
L3	183-189	$-0.29 \pm 0.26 \pm 0.30$
OPAL	183-202	$0.07 \pm 0.39 \pm 0.37$

*Not corrected for event selection and \mathbf{P}_T cut of 200 MeV

Account for selection biases by taking the double difference

$$\Delta_{cr} = [4q - 2(2q)]_{data} - [4q - 2(2q)]_{mc}$$

ALEPH Preliminary

Monte Carlo	$[4 extrm{q-2(2 extrm{q})}]_{mc}$	Δ_{cr}	significance	
JETSET	$0.17 {\pm} 0.03$	$0.14 {\pm} 0.23 {\pm} 0.1$	0.6σ	
HERWIG	$0.17 {\pm} 0.03$	$0.14 {\pm} 0.23 {\pm} 0.1$	0.6σ	
ARIADNE	$0.21{\pm}0.03$	$0.10{\pm}0.23{\pm}0.1$	0.4σ	
JETSET+SKI	-0.04 ± 0.03	$0.35 {\pm} 0.23 {\pm} 0.1$	1.4σ	
JETSET+SKII	$0.11 {\pm} 0.03$	$0.20{\pm}0.23{\pm}0.1$	0.8σ	
JETSET+SKII'	$0.07 {\pm} 0.03$	$0.24{\pm}0.23{\pm}0.1$	1.0σ	
HERWIG+CR	$0.46 {\pm} 0.03$	$-0.15 \pm 0.23 \pm 0.1$	- 0.6σ	
ARIADNE+AR2	-0.05 ± 0.03	$0.36 {\pm} 0.23 {\pm} 0.1$	1.4σ	
JETSET+GAL	$0.19{\pm}0.03$	$0.12 \pm 0.23 \pm 0.1$	0.5σ	

The particle flow method

Compare the particle flow in the regions between jets from the same W (A & B) and between jets from different W's (C & D)

• Topological selection

used by L3, DELPHI, ALEPH (as a cross-check) event selection efficiency 14% correct pairing 90%

• W mass analysis selection: used by ALEPH, OPAL event selection efficiency 85% (A) 40% (O); correct pairing 75% (A) 90% (O);

Statistical sensitivity = $\frac{|R_n(\text{model noCR}) - R_n(\text{model CR})|}{(\sigma_{R_n})_{stat}}$

 $(\sigma_{R_n})_{stat}$: statistical error on the full data sample (189 - 208 GeV)

Experiment	JETSET (SKI 100%)	HERWIG (11%)	ARIADNE (50%)
ALEPH	5.9	1.0	0.9
DELPHI	3.2	0.1	0.1
L3	5.0	0.0	0.2
OPAL	6.3	1.2	0.4

Systematic Uncertainties

- Inter-W Bose-Einstein correlations
- Background shape and cross-section $e^+e^- \rightarrow Z^0/\gamma \rightarrow q\bar{q}$ $e^+e^- \rightarrow Z^0Z^0 \rightarrow q\bar{q}q\bar{q}$
- Detector effects (different for each experiment)
- Finite MC statistics
- Fragmentation

 \rightarrow assign an error assuming the two processes factorise

 \rightarrow compare data to overall "fragmentation + CR" in a model

For LEP combination: systematic uncertainties separated into correlated and uncorrelated between the experiments Determine energy dependence from unreconnected JETSET MC samples and rescale to a single centre-of-mass energy

Statistically weighted average is formed $R_n(data) \pm \sigma(stat) \pm \sigma(syst) \pm \sigma(extrapol.)$

at 189 GeV

R_n (data)
$1.095 \pm 0.014 \pm 0.006 \pm 0.006$
$0.900 \pm 0.031 \pm 0.015 \pm 0.012$
$0.844 \pm 0.022 \pm 0.021 \pm 0.002$
$1.257 \pm 0.025 \pm 0.020 \pm 0.003$

Now compare Data with Monte Carlo:

Data - Model

Experiment	JETSET	SKI(100%)	HWG	HWG CR	ARIADNE	AR2
ALEPH	-2.44σ	2.87σ	-4.33σ	-3.17σ	-3.54σ	-2.26σ
DELPHI	-1.20σ	1.47σ	-1.83σ	-1.77σ	- 1.44 <i>σ</i>	-1.50σ
L3	-0.59σ	3.13σ	-1.24σ	-1.20σ	-1.01σ	-0.85σ
OPAL	-1.21σ	3.65σ	-1.95σ	-1.39σ	-1.52σ	-0.99σ

 σ - total error, includes $\sigma(stat),\,\sigma(syst),\,\sigma(extrapol.)$ and error from limited MC statistics

Compare data with other models:

Experiment	Data - SKII	Data - SKII'	Data - GAL*
ALEPH (Mass)	-2.01σ	-2.32σ	-1.65σ
L3	-0.16σ	-	-
OPAL	-1.05σ	-1.18σ	-

* reconnection parameter $R_0 = 0.004$, from a global fit to the Z^0 data

LEP Combination procedure

- Use common files, generated with KORALW at 188.6 GeV and hadronised with JETSET, HERWIG, ARIADNE
- Form the ratio $r = \frac{R_n^{data}}{R_n^{m,noCR}}$ for each experiment and for each model m
- For each model combine the r values of the four experiments for that model with weights

$$w^m = \frac{(R_n^{m,CR} - R_n^{m,noCR})^2}{\sigma^2(stat.) + \sigma^2(syst.)}$$

• AR2 (ARIADNE)

 $r^{ADLO} = 0.959 \pm 0.010 (\text{stat.}) \pm 0.009 (\text{syst.correl.}) \pm 0.005 (\text{syst.uncorrel.})$

 $r^{ADLO}(AR2)=0.989$

• HERWIG CR (HERWIG)

 $r^{ADLO}=0.950\pm0.011(\text{stat.})\pm0.009(\text{syst.correl.})\pm0.005(\text{syst.uncorrel.})$ $r^{ADLO}(\text{HERWIG CR})=0.987$

