Diffractive Production of Vector Mesons at HERA

Alessia Bruni INFN - Bologna H1 and ZEUS Coll.

OUTLINE

- Introduction
- Motivation
- Experimental results: ρ^0 , ϕ , J/ψ , $\psi(2S)$ different kinematic regimes: photoproduction, high Q^2 , high t
- Summary and Outlook

INTRODUCTION

Aim is understand VM in QCD

Alessia Bruni, INFN-Bologna

KINEMATICS

• Q^2 - virtuality of exchanged γ^*

$$Q^2 = -q^2 = -(k - k')^2$$

• W - $\gamma^* p$ centre of mass energy

$$W = \left(q + p\right)^2$$

 $\bullet\ t$ - 4-momentum transfer squared at the p vertex

$$t = (P - P')^2$$

• x - Bjorken variable

$$x = \frac{Q^2}{P \cdot q} = \frac{Q^2}{Q^2 + W^2}$$

Alessia Bruni, INFN-Bologna

MOTIVATION

HERA regime: collisions of 27.5 GeV e with 820 (920) GeV p $0 < Q^2 < 50 \text{ GeV}^2$ and 30 < W < 300 GeV

- Large W, large Q^2 , but $Q^2 \ll W^2$ strong interactions in the presence of a large scale (unitarity limit?)
- Small x
 - large density of partons, expect coherent effects
- Transition from soft to hard interactions
 transition from a hadron to a state of partons (confinement?)

EXCLUSIVE VECTOR MESON IN *ep*

 $\Rightarrow \rho: \omega: \Phi: J/\psi = 9:1:2:8$

In the soft Pomeron picture based on Regge phen. and VDM

$$\sum_{p}^{\nu} \alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP} \cdot t$$

$$\begin{aligned} \sigma_{\rm tot} &\sim s^{\alpha_{I\!\!P}(0)-1} \\ \frac{d\sigma_{\rm el}}{dt} &\sim \frac{\sigma_{\rm tot}^2}{16\pi} e^{2(b_0^{\rm el} + \alpha'_{I\!\!P} \ln s)t} \end{aligned}$$

$$\Rightarrow \alpha_{\mathbb{IP}}(0) = 1 + \epsilon \simeq 1.10$$

and $\alpha'_{\mathbb{IP}} = 0.25 \text{ GeV}^{-2}$
$$\Rightarrow \frac{\sigma_{\text{el,D}}}{\sigma_{\text{tot}}} \sim s^{\epsilon}$$

$$\Rightarrow \text{ shrinkage of the } t \text{ slope}$$

Exclusive vector meson in γp

 \Rightarrow at $Q^2 = 0$, change of regime with mass

Exclusive ρ^0 meson in γp

\boldsymbol{p} measured in forward proton spectrometer

 $\sigma(\gamma p \to J/\psi p)$

• Deconvolution of $xg(x,Q^2)$ from data still not possible

b slopes and ${I\!\!P}$ trajectory

Exclusive J/ψ in γ^*p

$\sigma(\gamma^*p\to J/\psi p)$ and $b~{\rm vs}~Q^2$

 $\Rightarrow J/\psi$ production has all the characteristics of a hard process

"Proton elastic form-factor"

ZEUS

In QCD, at high Q², b related to transverse gluon distribution
 Form (1 - t/m²_{2g})⁻⁴ suggested as elastic form-factor of 2g exchange by Frankfurt and Strikman

Alessia Bruni, INFN-Bologna ICHEP 2002

DIFFRACTIVE $\psi(2S)$ in γp

Ratio $R = \frac{\sigma(\psi(2S)p)}{\sigma(J/\psi p)}$ sensitive to the radial wave function of charmonium QCD prediction $R \simeq 0.17$

• t-dependence of J/ψ and $\psi(2S)$ is similar

Alessia Bruni, INFN-Bologna

EXCLUSIVE ρ^0 MESON IN $\gamma^* p$

W dependence of $\sigma(\gamma^* p \to \rho^0 p)$

 $\sigma_{\gamma^*p \to \rho p} \propto W^{\delta}$ at different Q^2 , $\Rightarrow \delta$ increases with Q^2

Alessia Bruni, INFN-Bologna

 Q^2 dependence of $\sigma(\gamma^*p\to\rho^0p)$

Alessia Bruni, INFN-Bologna

 Q^2 dependence of b

 \Rightarrow b decreases with Q^2 for both exclusive and p-diss. reaction

$\rho^0 \; {\rm MESON} \; {\rm IN} \; \gamma^* p \to \rho^0 p \; {\rm AND} \; \gamma^* p \to \rho^0 Y$

 Q^2 dependence of $d\sigma/dt$

⇒ Vertex factorization holds: probability of proton dissociation is independent of the projectile

DECAY ANGULAR DISTRIBUTIONS

Helicity angles θ_h, ϕ_h - angles of decay particle in the meson rest frame Φ - angle between scattering and production plane

 ρ rest frame

• Angular distributions are related to the spin of γ^* and meson

Angular distr. \rightarrow spin density matrix elements $r_{ij}^{kl} \rightarrow$ helicity amplitudes $T_{\lambda_{VM}\lambda_{\gamma}}$

DECAY ANGULAR DISTRIBUTIONS

Spin Matrix Elements

s-channel helicity conservation (SCHC):

• the VM retains the γ^* helicity. $R = \sigma_L / \sigma_T$ is related to the spin density matrix elements r_{00}^{04} (good approximation).

pQCD:

- during the interaction, the orbital angular momentum of the $q\overline{q}$ can be modified through the transfer of transverse momentum carried by gluons;
- the helicity of the outgoing vector meson can be different from that of the incoming photon, helicity flip between photon and meson is possible.

Exclusive
$$\rho^0$$
 meson in γ^*p

Spin Matrix Elements $\sigma(cos(\theta)) \rightarrow r_{00}^{04}$

$$R = \sigma_L / \sigma_T \simeq rac{r_{00}^{04}}{\epsilon (1 - r_{00}^{04})}$$

• σ_L and σ_T have the same W and t dependence

 $Alessia \ Bruni, \ INFN-Bologna$

Spin Matrix Elements, $\sigma(cos(\theta)) \rightarrow r_{00}^{04}$

• σ_L and σ_T have the same t dependence

Alessia Bruni, INFN-Bologna

 Q^2 dependence of $\sigma(\gamma^*p
ightarrow
ho^0 p)$

 \Rightarrow As expected different n for σ_L and σ_T

• Ratio of single flip to non flip amplitudes increases with t'Probability of double flip is still small in this *t*-kinematic domain

t dependence of $\sigma(\gamma p \to VY)$

HIGH- $t \ \rho^0$, ϕ and $J/\psi \ln \gamma p$

t dependence of $\alpha'_{{\rm I\!P}}$ and W

 $\alpha'_{\mathbb{P}}$ small $\equiv W$ dependence not change with t, described by pQCD $\Rightarrow t$ provides an hard scale; $\alpha_{\mathbb{P}}(t)$ is not linear in t

 $\sigma_{\phi,J/\psi}/\sigma_{
ho}$ ratios at high t and SU(4)

• Indication of VM production flavour independent at high t

Alessia Bruni, INFN-Bologna

Scaling of $\sigma(\gamma^* p \rightarrow Vp)$

OVERVIEW OF VECTOR MESON PRODUCTION SU(4)?

 \Rightarrow does not work for J/ψ

in $Q^2 + M_V^2$ proposed by H1 section (nb) 5 ZEUS data o. prel. *φ**9/2, prel. $J/\psi(\mu\mu)*9/8$ $(Q^2 + M^2)(GeV^2)$ 0.6 /w(ee)+9/8 ZEUS data cross section (nb) 0 2 cross $Q^{2}+M^{2}=9.6 \text{ GeV}^{2}$ ▼ ω*9 10^{2} p. prel. W (GeV) *ϕ**9/2, prel. cross section (nb) ZEUS data o, prel. 1.5 ⊕ J/ψ*9/8, prel. $Q^2 + M^2 = 12.7 \text{ GeV}^2$ 10^{2} W (GeV) : section (nb) 0 ZEUS data 7.6 10^{2} ρ, prel. ⊕ J/ψ+9/8, prel. cross $Q^2 + M^2 = 25.6 \text{ GeV}^2$ 10^{2} 10^{2} W (GeV) W (GeV)

• No simple universality for VM if $Q^2 + M^2$ is used as a scale

• Naive SU(4) may be altered by VM wave function effects

abs 820

$\frac{\text{OVERVIEW OF VECTOR MESON PRODUCTION}}{r_V = \frac{\sigma(\gamma^*p \to Vp)}{\sigma_{\rm tot}(\gamma^*p)} \, \text{vs} \, W$

Expectation: $\sigma_{\rm tot}(\gamma^*p) \propto W^{\delta}$, $\sigma(\gamma^*p \to Vp) \propto W^{2\delta} \Rightarrow r_V \propto W^{\delta}$

• W independence of r_V for ρ^0 can not be explained by pQCD or Regge; it is similar to inclusive diffraction

Alessia Bruni, INFN-Bologna

OVERVIEW OF VECTOR MESON PRODUCTION

Summary and Outlook

- Experimentally much progress has been achieved,
 - high precision in large kinematic region
- Theoretically the overall picture looks correct,
 - large uncertainties
 - full NLO calculations are missing
- For the near future:
 - increased statistics at high Q^2 will help (HERA II),
 - $-\Upsilon$ remains to be investigated (HERA II)