Leading Baryons at HERA

W. Schmidke Columbia University

On behalf of the H1 and ZEUS collaborations

ICHEP02, Amsterdam July 27, 2002

- Baryon production models: particle exchange
- Vertex factorization
- Vertex factorization violation: rescattering
- Pion structure function

Motivation: Production Mechanisms

ep scattering: baryon # has to go somewhere:

Standard fragmentation: Final-state N in *p* remnant MC models

Detectors and Data

Data sets: vary γ virtuality Q² Q² ~ 0 \rightarrow photoproduction (PHP) Q² > few GeV² \rightarrow deep inelastic scattering (DIS) Presented here: ZEUS – neutrons, protons in DIS, PHP H1 – neutrons in DIS, PHP with dijet in final–state

n with dijet

Compare shape and normalization of data:

- Standard fragmentation models do not reproduce data
- π⁺ exchange models E_n spectrum well at large E_n
- π^+ exchange models jet E_{τ} well

Energy Spectra: *p* in DIS

Compare shape and normalization of data:

- Standard fragmentation models do not reproduce data
- Exchange models describe data
- Need multiple processes –
 Pomeron, Reggeon, π⁰ exch.⁻

⇒Virtual particle exchange describes leading baryon rate, energy spectra

Vertex Factorization

In exchange models *ep* cross section factorizes, e.g. π exchange:

Baryon Rate vs. DIS Kinematics

ZEUS

Factorization Violation

Within exchange picture can violate factorization \Rightarrow rescattering model e.g. *n* production via π^+ exch.: D'Alesio & Pirner

- In π exchange models, $<\mathbf{r}_{n\pi}>$ smaller at lower $\mathbf{x}_{\perp} \Rightarrow$ more rescattering at lower \mathbf{x}_{\perp}
- γ size $\sim 1/Q \Rightarrow$ more rescattering at lower Q²

Factorization Violation

Fewer neutrons with decreasing x_L, decreasing Q²
 Qualitative agreement with rescattering model

Pion Structure Function

• In region where factorization \sim valid (high Q², high x₁)

and π exchange dominates

• Like cross section, structure function factorizes:

$$F_{2}^{LN}(x_{BJ}^{2},Q^{2},x_{L}^{2},t) = f_{\pi/p}(x_{L}^{2},t) \times F_{2}^{\pi}(x_{BJ}^{2}/(1-x_{L}^{2}),Q^{2})$$

- Measure F_2^{LN}
- $\bullet~f_{_{\pi/p}}$ from exchange models \rightarrow factor of 2 variation in normalization
- Can extract F_{2}^{π} (use extremes of flux)
- Compare to parameterizations

(based on low Q^2 , high $x_{_{RI}}$ fixed target data)

Pion Structure Function

Can discriminate between parameterizations at high Q², low x_{BI}

 $Q^2 = 30 \text{ GeV}^2$

 $O^2 = 240 \text{ GeV}^2$

ZEUS 95-97

F^p₂ scaled

Summary: Leading Baryons

- Standard fragmentation models fail to describe baryon production
- Particle exchange models describe rate, spectrum of baryons
- Vertex factorization approximately valid at high Q²
- Vertex factorization broken at low Q², form of violation varies with x₁
- Violation consistent with particle exchange, rescattering
- F_2^{π} measured at high Q², low x_{BJ}
- $F_2^{\pi} \propto F_2^{p}$