31st International Conference on High Energy Physics Amsterdam, July 24-31, 2002

Rapidity Gaps in $\bar{p}p$, ep and e^+e^- Collisions

K. Hatakeyama *The Rockefeller University* For the CDF, ZEUS, H1 and L3 Collaborations

- Rapidity gaps between jets at Tevatron and HERA
- Rapidity gaps in hadronic Z decays at LEP
- Multigap diffraction at Tevatron

PRL 81, 5278 (1998) : CDF

Rapidity Gaps between Jets at Tevatron

CDF and DØ measured
CSE fraction at
$$\sqrt{s} = 1800$$
and 630 GeV

- Ratio of CSE fraction $R[\frac{630}{1800}] = 2.4 \pm 0.7 \pm 0.7 : \text{CDF}$ $R[\frac{630}{1800}] = 3.4 \pm 1.2 : \text{DØ}$
- $rightarrow CSE fraction vs E_T and <math>\Delta \eta$ at $\sqrt{s} = 1800 \text{ GeV}$
 - rising trend : DØ
 - approx. flat : CDF
 - → Not inconsistent within errors

Rapidity Gaps between Jets at HERA : H1

 $rightarrow E_T^{gap}$: total E_T between the two highest E_T jets

- Excess at $E_T^{gap} < 0.5$ GeV over PYTHIA and HERWIG
- Significant difference between
 PYTHIA and HERWIG (due to different hadronization models)

Differential Cross Section vs E_T^{gap}

Rapidity Gaps between Jets at HERA : H1

- PYTHIA predictions fall exponentially with $\Delta \eta$
- Data distributions are flat or rising : CSE

Rapidity Gaps between Jets at HERA : H1

ICHEP 2002, July 24-31

Rapidity Gaps between Jets at HERA : ZEUS

Rapidity Gaps in Hadronic *Z* **Decays at LEP**

CS2 : γ replaced by g, then parton shower

hep-ex/0205004 : L3 [PRL 76, 4886 (1996) : SLD]

in e^+e^- annihilations

ICHEP 2002, July 24-31

Rapidity Gaps in Hadronic *Z* **Decays at LEP : L3**

Data are in good agreement with color octet exchange (JETSET) predictions

Fraction of CSE events, R: $R = 0.015 \pm 0.030$ (from fit to A_{12}^S) $(\chi^2/d.o.f. = 4.5/11)$

All estimates of R are compatible with 0

Obtain 95% C.L. upper bound R(95% C.L.) < 6.7(9.0)%for CS0 (CS2)

Multigap Diffraction : Introduction

ICHEP 2002, July 24-31

Multigap Diffraction : Introduction

Regge theory formula in terms of rapidity gap width

$\kappa \equiv rac{g}{eta}$	$rac{g(0)}{g(0)} = 0.17$, $\xi = e^{-\Delta y}$	$f, (s')^{\epsilon} = e^{\epsilon \Delta y'}. \Delta y' = 1$	n $s - \sum \Delta y_i$
Proces	S	Gap Probability (P_{gap})	$\sigma_{tot}(\Delta y')$
SD:	$\frac{d^{2}\sigma_{SD}}{dtd\Delta y} =$	$\left[\frac{\beta(t)}{4\sqrt{\pi}}e^{(\epsilon+\alpha't)\Delta y}\right]^2$	$\kappa[\beta^2(0)e^{\epsilon\Delta y'}]$
DD:	$\frac{d^{3}\sigma_{DD}}{dtd\Delta ydy_c} =$	$\kappa \left[\frac{\beta(0)}{4\sqrt{\pi}}e^{(\epsilon+\alpha't)\Delta y}\right]^2$	$\kappa[\beta^2(0)e^{\epsilon\Delta y'}]$
DPE:	$\frac{d^4\sigma_{DPE}}{dt_{\bar{p}}dt_pd\Delta y_{\bar{p}}d\Delta y_p} =$	$\left[\prod_{i=\bar{p},p}\frac{\beta(t_i)}{4\sqrt{\pi}}e^{(\epsilon+\alpha't_i)\Delta y_i}\right]^2$	$\kappa^2[\beta^2(0)e^{\epsilon\Delta y'}]$

The Regge formulae have unitarity problem, e.g. $\sigma_{SD}/\sigma_{tot} \rightarrow 1$ at $\sqrt{s} \sim 2$ TeV <u>Renormalization</u> : (K. Goulianos, PLB 358,379(1995), hep-ph/0110240) Normalizing the integral of the gap probability P_{gap} to unity yields the correct \sqrt{s} dependence of σ_{SD} and σ_{DD} . What about σ_{DPE} and σ_{SDD} ?

ICHEP 2002, July 24-31

Double Pomeron Exchange (DPE) Analysis : CDF

For events triggered on a leading antiproton, plot the distribution of ξ_p obtained by :

$$\xi_p = \frac{M^2}{s\,\xi_{\bar{p}}} \approx \frac{\sum_i E_{T,i} \exp(+\eta_i)}{\sqrt{s}}$$

- \$\xi_p\$ distribution \$\prod 1/\xi^{1+\epsilon}\$
 (The line is from single diffraction)
- The bump at $\xi_p \sim 10^{-3}$ is due to cab. noise

DPE fraction in leading- \bar{p} triggered SD events $0.035 < \xi_{\bar{p}} < 0.095, \xi_p < 0.02$

Source	R(1800 GeV)	<i>R</i> (630 GeV)
Data	$0.197 \pm 0.001 \pm 0.010$	$0.168 \pm 0.001^{+0.015}_{-0.020}$
Regge	0.36 ± 0.04	0.25 ± 0.03
Renormalized IP-flux (PLB 358,379(199	95)) 0.041 ± 0.004	0.041 ± 0.004
Renormalized P_{gap} (hep-ph/0110240)	0.21 ± 0.02	0.17 ± 0.02

Single + Double Diffraction (SDD) Analysis : CDF

 $\frac{d\,^5\sigma_{SDD}}{dt_1dt_2d\Delta y_1d\Delta y_2dy_c} = P_{gap}(t_1, t_2, \Delta y_1, \Delta y_2, y_c) \times \kappa^2 \beta^{\,2}(0)(s')^{\epsilon}$

$$P_{gap} = \left[\frac{\beta(t_1)}{4\sqrt{\pi}}e^{(\epsilon+\alpha't_1)\Delta y_1}\right]^2 \kappa \left[\frac{\beta(0)}{4\sqrt{\pi}}e^{(\epsilon+\alpha't_2)\Delta y_2}\right]^2$$

SDD fraction in leading- \bar{p} triggered SD events

$0.06 < \xi_1$	< 0.09,	$\Delta \eta_2 > 3$
----------------	---------	---------------------

Source	R(1800 GeV)	<i>R</i> (630 GeV)		
Data	$0.252 \pm 0.001 \pm 0.045$	$0.192 \pm 0.001 \pm 0.046$		
Regge	0.66 ± 0.07	0.40 ± 0.04		
Renormalized P_{gap}	0.26 ± 0.03	0.21 ± 0.02		
(predictions have $\pm 10\%$ uncertainty due to error in κ)				

Summary of Soft Diffraction Results

ICHEP 2002, July 24-31

Summary

Rapidity gaps between jets at Tevatron and HERA

- Evidence of an excess of events with a rapidity gap between jets at both Tevatron and HERA
- BFKL model gives reasonable description of data (H1) at low x_{γ}^{OBS} (ZEUS)

Rapidity gaps in hadronic Z decays at LEP

Data are well explained by color octet exchange alone

Multigap diffraction at Tevatron

- Fractions of DPE and SDD events in SD events are measured at $\sqrt{s} = 1800$ and 630 GeV by CDF
- The measured DPE and SDD fractions are in agreement with renormalized gap predictions