Consequences of t-channel unitarity for pp, γp and $\gamma \gamma$ cross sections at $Q^2 = 0$ and in DIS

hep-ph/0207196

J.R. Cudell, E. Martynov and G. Soyez Université de Liège

Standard argument: p and π

Go above threshold in the crossed channel: $t > 4m_p^2$ $S^{\dagger}S = SS^{\dagger} = 1$ I $(S=1I+iT) \Longrightarrow T - T^{\dagger} = iT^{\dagger}T = iTT^{\dagger}$

Watson-Sommerfeld transform to complex j plane:

One π threshold:

$$T_{pp}(j,t) - T_{pp}(j,t)^{\dagger} = T_{p\pi}(j,t)\rho_{\pi}T_{\pi p}^{\dagger}(j,t)$$

with $\rho_{\pi} = 2i\sqrt{\frac{t-4m_{\pi}^2}{t}}$.

p and π thresholds:

Multiple thresholds:

$$\int = \int \int + O(1/\Delta)$$
$$\lim_{j \to z_m} \left[T_{\pi\pi}(j) - \frac{T_{p\pi}(j)T_{\pi p}(j)}{T_{pp}(j)} \right] = finite \ terms.$$

complex j-plane for t>0

relations for residues of each singularity

continue to t<0

Simple poles

Simple and double poles

Simple, double and triple poles

$$T_{pq} = \frac{S_{pq}}{j-z}$$
$$\Downarrow$$
$$S_{22}S_{11} = (S_{12})^2$$

$$T_{pq} = \frac{S_{pq}}{j-z} + \frac{D_{pq}}{(j-z)^2}$$

$$\downarrow D_{11}D_{22} = (D_{12})^2$$

$$D_{11}^2S_{22} = D_{12}(2S_{12}D_{11} - S_{11}D_{12})$$

$$T_{pq} = \frac{S_{pq}}{j-z} + \frac{D_{pq}}{(j-z)^2} + \frac{F_{pq}}{(j-z)^3}$$

$$\downarrow$$

$$F_{11}F_{22} = (F_{12})^2$$

$$F_{11}^2D_{22} = F_{12}(2D_{12}F_{11} - D_{11}F_{12})$$

$$F_{11}^3S_{22} = F_{11}F_{12}(2S_{12}F_{11} - S_{11}F_{12})$$

$$+ D_{12}F_{11}(D_{12}F_{11} - 2D_{11}F_{12})$$

$$+ D_{12}^2F_{12}^2$$

New tCU relations

The case of off-shell photons

Several channels, multiple thresholds...

The case of on-shell photons

Problem:

Soft emissions may destroy the possibility to define exclusive processes no S matrix for QED

- \Rightarrow photons do not enter the tCU relations
- \Rightarrow on-shell photons can have extra singularities, as off-shell photons

Remarks:

Existence of a pole mass for the electron? Possibility of collective states? cfr Lavelle, Mc Mullan, Bagan et al.

The existence of extra singularities in photon total cross sections would prove that one cannot recover an S-matrix formalism in QED

Models for o

lower trajectories: a/f

 $Y(Q^2)(2\nu)^{-\eta}$

rising term

double pole

 $\begin{array}{l} D(Q^2) \left[\log \left(1 + \Lambda(Q^2)(2\nu)^{\delta} \right) \right. \\ \left. + \left(s \rightarrow u \right) \right] \\ \left. + C(Q^2) \end{array}$

triple pole

$$t(Q^2) \left[\log(2\nu) + d(Q^2) \right]^2 + c(Q^2)$$

box diagram

only for off-shell photons

Fit to total cross sections:

from 7 GeV to 30 TeV γ down to 2 GeV!

low side of error bars

no box diagram contribution

no extra singularities

good fit to all data

extrapolates to "low" total cross sections

$$F_2^p$$
 at higher Q^2

$$\begin{aligned} x &< 0.3\\ Q^2 &< 400 \text{ GeV}^2\\ 2\nu &> 7 \text{ GeV}^2\\ |\cos(\vartheta_t)| &= \frac{\nu}{m_p \sqrt{Q^2}} > \frac{49}{2m_p^2} \end{aligned}$$

no hard pomeron

no DGLAP evolution

$$\begin{aligned} x &< 0.3 \\ Q^2 &< 800 \text{ GeV}^2 \\ 2\nu &> 7 \text{ GeV}^2 \\ |\cos(\vartheta_t)| &= \frac{\nu}{Q^2} > \frac{49}{2m_p^2} \end{aligned}$$

test of tCU relations good fit to all data need box diagram

F_2^{γ} : perturbative (BFKL) region

The soft fit + the box diagram seem to be sufficient to reproduce the data

Note: this can be done directly using the tCU relations and HERA data

Conclusion: singularities at t=0

