The Q² Dependence of the Generalized GDH Sum Rule for Proton, Deuteron and Neutron

A.Nagaitsev

Joint Institute for Nuclear Research, Dubna

for the

collaboration

Amsterdam, July, 2002

- Motivation
- The experiment in 1997-2000
- Extraction of Spin Asymmetry
- Q² dependence of the GDH Integrals
- Conclusions

Motivation: The GDH Sum Rule

The GDH sum rule

$$I_{GDH} = \int_{\nu_0}^{\infty} [\sigma_{1/2}(\nu) - \sigma_{3/2}(\nu)] \frac{d\nu}{\nu} = -\frac{2\pi^2 \alpha}{M^2} k^2$$

$$I_{GDH}^{P} = -204 \mu \mathrm{b} \; (\kappa_{P} = +1.79)$$
 $I_{GDH}^{N} = -233 \mu \mathrm{b} \; (\kappa_{N} = -1.91)$ $I_{GDH}^{D} = -0.65 \mu \mathrm{b} \; (\kappa_{D} = -0.143)$

The generalization of the GDH integral:

$$I_{GDH}(Q^2) = \frac{8\pi^2 \alpha}{M} \int_0^{x_0} \frac{g_1(x, Q^2) - \gamma^2 g_2(x, Q^2)}{\nu \sqrt{1 + \gamma^2}} \frac{dx}{x}$$
 (1)

In leading twist

$$I_{GDH}(Q^2)_{\gamma^2 \to 0} = \frac{16\pi^2\alpha}{Q^2} \int_0^1 g_1(x) dx = \frac{16\pi^2\alpha}{Q^2} \Gamma_1$$
 (2)

 Examining the generalized GDH integral provides a way to study the transition from real-photon absorption (Q²=0) on the nucleon to polarized deep inelastic scattering (DIS).

The experiment in 1997-2000

- Longitudinally polarized e^{\pm} beam in HERA storage ring P=27.6 GeV, current 40mA, <P_{beam}>=55%
- Two identical halves of forward spectrometer with acceptance $40 < \Theta < 220 \mathrm{mrad}$
- Identification of scattered positron(electron)
 with efficiency > 99% at hadron contamination < 1%
- Internal storage cell gas target with density for polarized H: $10^{13...14}$ nucl./ cm^2 , $P_{targ.} \sim 88(85)\%$
- Integrated Luminosity
 For deuteron (proton) data set: 111pb⁻¹ (70pb⁻¹).

Extraction of Spin Asymmetry

- Data were divided into six bins in Q²: 1.2 − 12.0 GeV²
- The kinematic requirements on the DIS scattered positrons:

 $\theta > 0.04$ Rad and y < 0.85 and W² regions:

 $-1.0 \text{ GeV}^2 < \text{W}^2 < 4.2 \text{ GeV}^2$: resonance region

 $-4.2 \text{ GeV}^2 < W^2 < 45.0 \text{ GeV}^2$: DIS region

 $-W^2 > 45.0 \text{ GeV}^2$: (extrapolation)

The spin asymmetry

$$A_1 = \frac{A_{\parallel}}{D} - \eta A_2$$
 $A_{\parallel} = \frac{N^- L^+ - N^+ L^-}{N^- L_p^+ + N^+ L_p^-}$ (3)

 $N^+(N^-)$ is the number of scattered positrons for target spin parallel(anti-parallel) to the beam spin orientation,

 $L^+(L^-)$ is the dead-time-corrected luminosity,

 $L_P^+(L_P^-)$ is the luminosity weighted by the product of beam and target polarizations.

Radiative corrections

POLRAD 2.0 was used. RC do not exceed 7%(4%) of the asymmetry $A_1 + \eta A_2$ for deuteron (proton).

MC contaminations

The contributions from elastic(quasielastic) for total GDH and from elastic(quasielastic) and DIS regions for resonance GDH were subtracted on A_{\parallel} level.

Q² dependence of the Generalized GDH Integral

The GDH Integrals for proton and deuteron

$$I(Q^2)_{GDH} = \frac{8\pi^2 \alpha}{M} \int_0^{x_0} \frac{A_1 F_1}{\nu \sqrt{1 + \gamma^2}} \frac{dx}{x},\tag{4}$$

$$F_1 = F_2(1+\gamma^2)/(2x(1+R))$$

DIS region: F_2 is taken from NMC P15 fit,

R is taken from SLAC fit (R1990), $A_2^{p(d)}=0.5(0.05)xM/\sqrt{Q^2}$. Resonance region: F_2 is taken from Bodek fit, R=0.18, $A_2^{p(d)}$ =0.06 (0.0)

• The unmeasured region (W² >45.0 GeV²)

The contributions were estimated with parameterization from N.Bianchi and E.Thomas, Phys. Lett. B450 (1999), 439.

The GDH Integral for neutron

$$\frac{I_{GDH}^{D}}{1 - 1.5\omega_{d}} = I_{GDH}^{N} + I_{GDH}^{P},\tag{5}$$

C. Ciofi degli Atti et al., nucl-th/9602026

- The systematic uncertainties
 - Beam and target polarizations (5.5%),
 - Spectrometer geometry (2.5%),
 - Smearing and radiative effects (up to 14%),
 - Knowledge of F_2^p (2%) and F_2^d (5%),
 - The lack of knowledge of A_2^p (up to 15%) and A_2^d (up to 20%),
 - The contribution from unmeasured region (5%).

Q² dependence of the Generalized GDH Integrals in Resonance region

The GDH Integral as a function of Q^2 for the resonance region. The curves are predictions based on a Q^2 -evolution of nucleon-resonance amplitudes.

- ullet the resonance contribution is small for ${f Q}^2>$ 3 ${f GeV}^2$
- the model describes the neutron data well
- the model describes proton and deuteron data well for ${\bf Q}^2>$ 2.5 GeV 2 , but underestimates them for lower ${\bf Q}^2$

Q² dependence of the Generalized GDH Integral

The GDH Integral for proton, deuteron and neutron versus Q^2 . The curves are predictions based on Q^2 evolution of g_1 and g_2 .

- proton data very well described
- deuteron data are in agreement within the exp. uncertainties
- neutron data are slightly underestimated (still OK within exp.uncertainties)

Q² dependence of the Generalized GDH Integral

The Q² dependence of the generalized GDH integrals for the proton(top panel) and neutron(bottom panel) after the leading twist dependence, Q²/(16 $\pi^2\alpha$), has been divided out. The dash-dotted lines are straight line to the data.

No deviation from the leading twist can be seen

Conclusions

- The Generalized Gerasimov–Drell–Hearn Integrals for proton, deuteron and neutron are measured for the first time in both the resonance and DIS regions for the Q² range from 1.2 to 12.0 GeV².
- The parts of GDH Integrals in the resonance region for neutron is in agreement with predictions of Aznauryan model based on the Q^2 evolution of nucleon resonance helicity amplitudes. For proton and deuteron it does underestimated the data for $Q^2 < 2.5 \text{ GeV}^2$.
- Above Q²=3 GeV² the DIS contributions to the Generalized GDH Integrals are dominant for all targets.
- The Generalized GDH Integral for proton is very well described by Soffer-Teryaev prediction and for deuteron and neutron it is in agreement within the uncertainties of the measurements.
- Data show no indication for large non-leading twist effects.