The Status of Run II at Fermilab

Krish Gounder Fermi National Accelerator Laboratory Batavia, IL 60510.

ICHEP-2002, Amsterdam, The Netherlands.

OUTLINE

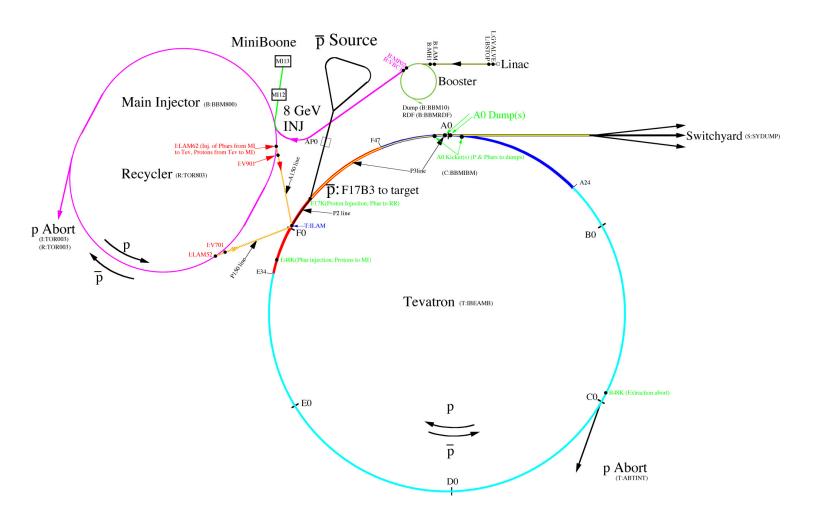
- Overview of Operations
- Run IIa: Present Status
- Recycler Commissioning
- Outlook: Future Plans

Overview of Operations

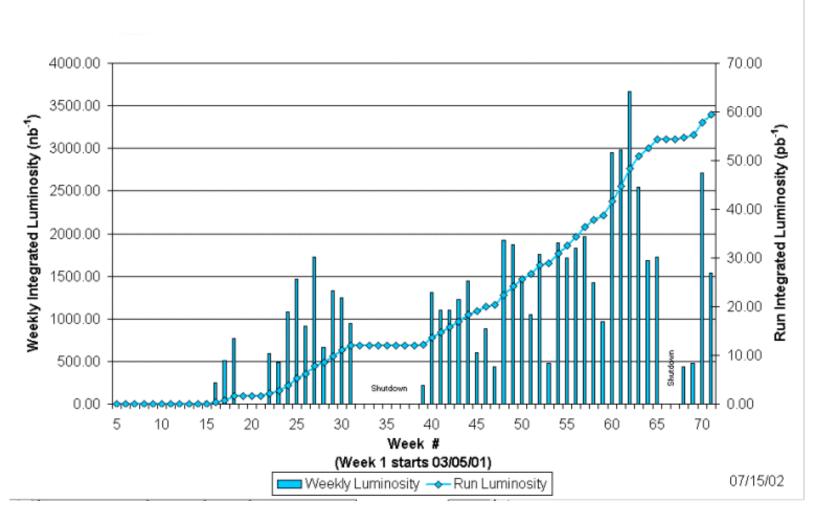
- Fermilab Accelerator Complex Overview
- Antiproton Stacking Mode
 - Proton beam to Pbar target (every 2.4 seconds) 84 53MHz bunches > 8 \rightarrow 150 GeV in MI
 - Pbar collection, debunching, cooling and stacking

• Tevatron Shots

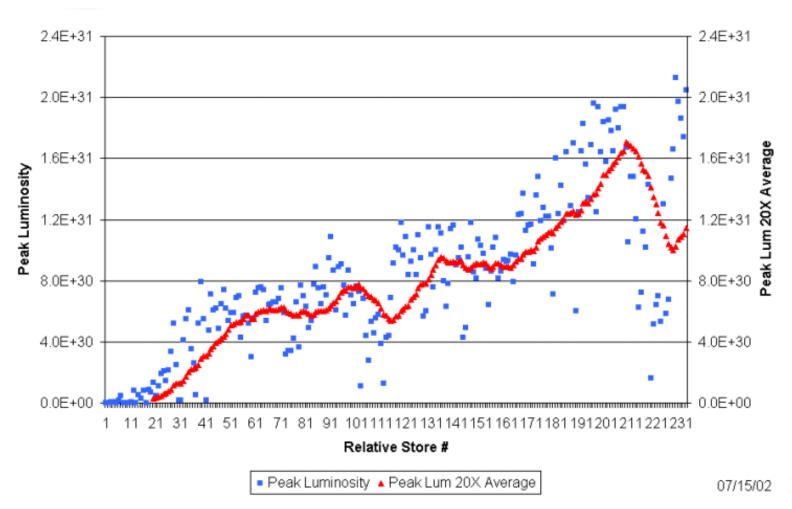
- Proton shots 7 53MHz bunches, > 8 to 150 GeV > 1 bunch Repeated till 36 bunches in Tevatron
- Antiprotons 7 53MHz bunches, > 8 to 150 GeV > 4 bunches Repeated 9 times
- Protons and antiprotons: $150 o 980~{
 m GeV}$


• Colliding Stores

- Collisions at CDF and DØ
- Store lasts $\sim 14~{
 m hours}$


Fermilab Accelerator Complex

Accelerator Overview


Collider Run IIA Integrated Luminosity

Peak Luminosity History

Collider Run IIA Peak Luminosity

The Status of Run II K. Gounder

ICHEP-2002

Status on Luminosity **Parameters**

Quantity	Highest lum.	Highest	Run IIa
	to $12/15/01$	lum. to date	goals
$\overline{\text{Maximum } \overline{p}}$	10	11.4	18
stackrate (E10/hr)			
Maximum \overline{p}	115	144	165
stacksize (E10)			
\overline{p} transfer Eff.	0.23	0.49	0.80
\overline{p} /bunch at low β (E9)	7.6	14.1	33.0
p/bunch at low β (E9)	115	211	270
Emitt. at low β	16.0	16.3	17.5
$(\pi$ -mm-mr)			
Peak luminosity	0.84	2.12	8.6
$(E31 \ cm^{-2}sec^{-1})$			

Luminosity Expression

$$\mathbf{L} = \frac{10^{-6} fB N_p N_{\overline{p}} [6\beta_r \gamma_r]}{2\pi \beta^* [\epsilon_p + \epsilon_{\overline{p}}]} H(\sigma_l \beta^*) \quad (10^{31} cm^{-2} sec^{-1})$$

f = Revolution frequency (47.7 kHz)

B = Number of bunches (36)

 $N_p, N_{\overline{p}} = \text{Bunch intensities (E9)}$

 $\beta_r \gamma_r = \text{Kinematic } \beta \gamma \text{ (1045)}$

H = Hourglass factor (0.60-0.70)

 $\sigma_l = \text{Bunch length (cm)}$

 $\beta^* = IR Beta function (35 cm)$

 $\epsilon_p, \epsilon_{\overline{p}} = \text{Transverse emittances } (\pi\text{-mm-mr})$

The Challenging Issues

Transverse Emittance

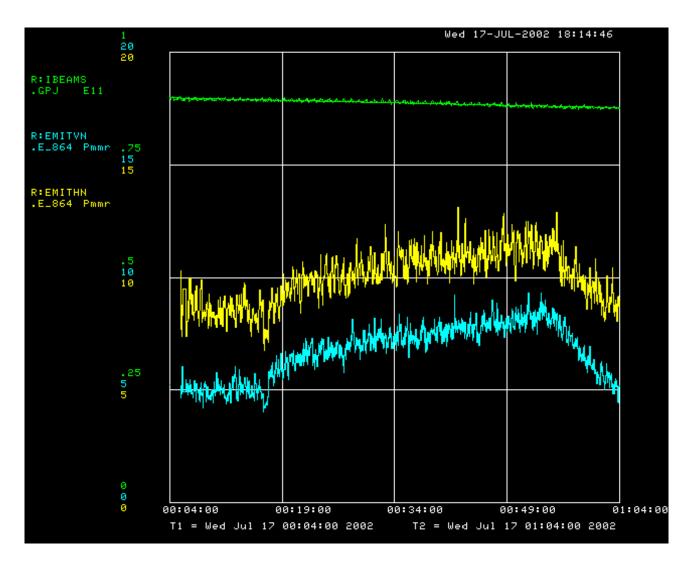
- Accumulator: Lattice, Cooling
- 2 lattices: Optimized 1 for stacking, 1 for shots
- As of now, only the beam blow-up along the transfer lines need to be addressed!

Long range beam-beam effects

- Tevatron: Helix, aperture
- Remove restrictive apertures for Maximum possible helix size
- Install octupoles: Landau damping, chromaticity

CDF and DØ backgrounds

- Vacuum (?), more shielding


• What else!

- Mismatch, coalescing, lifetime etc..

Recycler Ring Commissioning

- Located in the Main Injector tunnel, about 2m above the MI beam pipe.
- Recycles the residual antiprotons from the Tevatron stores; Improves the antiproton stacking rate of the Accumulator by rapid transfers; Expected to improve the overall luminosity by a factor of 2-3.
- Commissioning process is in full swing Antiprotons as well as protons are being circulated with 50% and 90 % efficiency.
- Presently cooled antiproton lifetime is > 100 hours with Main Injector ramping Proton life time is about 30 hours with MI ramping (no cooling for protons).

Antiproton Cooling in Recycler

Emittance growth \sim 4 π -mm-mr Cooling rate \sim 10 π -mm-mr

RR Commissioning: Issues

Vacuum Improvements

- Ion pumps are being doubled
- Bake longer at higher temperatures
- Life time is expected to triple

Orbit Control

- New Trims are being added
- New design of BPMs is in progress

Main Injector Ramping

- Additional beam pipe sheilding
- Ramping quad power supplies

• Beam Injection and Extraction

- Fix injection mismatches
- More diagnostic instruments are being installed

Outlook: Future Plans

Besides the commissioning of Recycler, there are two major components for the Tevatron luminosity upgrade: Improving the antiproton production rate and going into 132 ns operation mode.

I. Improvements in Antiproton Production

- Slip Stacking in the Main Injector
 - Stack two 84 53MHz proton bunches longitudinally in MI with two independent RF systems
 - Pbar production rate to improve by ~ 1.8
- Improvements in Lithium Lens Design
 - Operating gradient: $750 \rightarrow 900 \text{ T/m}$
- Improving Transverse Collection Aperture
 - Should go to $> 30\pi$ -mm-mr from $\sim 16\pi$ -mm-mr
- Increased Antiproton Cooling
 - From 2-4 GHz \rightarrow 4-8 GHz.

Future Plans - Cont'd

II. More Colliding Bunches - 132 ns Operation

At higher luminosities, The number of interactions per bunch (> 5) collision becomes hard to deal with for data reconstruction and background reduction in 36X36 bunch Tevatron operations. Need to increase the beam bunches by decreasing bunch spacing. Next step: 140X100 - 132 ns bunch spacing. Adds new challenges:

- Long range beam-beam effects
 - \sim 2 times worse
- Crossing angle must be introduced at IR's
 - Avoids parasitic head-on collisions near IR's
- Proton beam stability
 - May become \sim 3-4 times worse
- Detector backgrounds
 - Could increase by a factor of 4.