The DØ Detector for Run II

Levan Babukhadia

SUNY at Stony Brook for the DØ Collaboration

Physics Challenges ® The Upgraded Tevatron

2.0E+31

1.8E+31 1.6E+31 1.4E+31 1.2E+31

Physics goals for Run 2

- precision studies of weak bosons, top, QCD, B-physics
- searches for Higgs, supersymmetry, extra dimensions, other new phenomena

require

- electron, muon, and tau identification
- jets and missing transverse energy
- flavor tagging through displaced vertices and leptons
- luminosity, luminosity, luminosity...

	Run 1b	Run 2a	Run 2b
Bunches in Turn	6×6	36×36	140×103
√s (TeV)	1.8	1.96	1.96
Typical L (cm ⁻² s ⁻¹)	1.6 ×10 ³⁰	8.6 ×10 ³¹	5.2 ×1032
∫ Ldt (pb ⁻¹ /week)	3.2	17.3	105
Bunch xing (ns)	3500	396	132
Interactions / xing	2.5	2.3	4.8
	Run 1 → Run 2a → Run 2b 0.1 fb ⁻¹ → 2-4 fb ⁻¹ → 15 fb ⁻¹		

FERMILAB'S ACCELERATOR CHAIN

Collider Run IIA Peak Luminosity

Peak Lum. achieved over 2 ×10³¹ cm⁻²s⁻¹ Planned to reach Run 2a design by Spring 2003

ICHEP02 – 31st International Conference on High Energy Physics, Amsterdam, 24 – 31 July, 2002

Levan Babukhadia

05/27/02

2.0E+31

1.ZE+31

Physics Challenges ® The Upgraded Detector

- New tracking devices, Silicon (SMT) and Fiber Tracker (CFT), placed in 2 T magnetic field (see also George Ginther's talk in this session)
- Upgraded Calorimeter electronics readout and trigger

- Added PreShower detectors, Central (CPS) and Forward (FPS)
- Significantly improved Muon System
- New forward proton spectrometer (FPD)
- Entirely new Trigger System and DAQ to handle higher event rate

Calorimeters

ICHEP02 – 31st International Conference on High Energy Physics, Amsterdam, 24 – 31 July, 2002

Levan Babukhadia

Calorimeter Performance

Levan Babukhadia

Muon System

- Central and Forward regions, coverage up to η = \pm 2
- Three layers: one inside (*A*), two outside (*B*, *C*) the toroid magnets
- Consists of scintillators and drift tubes
- Central Proportional Drift Tubes (PDT's)
 - \bullet 6624 drift cells (10.1 \times 5.5 cm) in 94 three- and four-deck chambers
- Central Scintillation Counters
 - 360 "cosmic ray" counters outside the toroid ($\Delta \phi = 22.5^{\circ}$)
 - 630 "A– ϕ " counters inside ($\Delta\phi$ = 4.5°), $\Delta\eta$ = 0.1
- Forward Mini Drift Tubes (MDT's)
 - 6080 8-cell tubes in 8 octants per layer on North and South side, cell cross-section 9.4 \times 9.4 mm
- Forward Scintillation Counters (Pixels)
 - 4214 counters on the North and South side
 - $\Delta\phi$ = 4.5° matches the MDT sector size

Muon System Performance

ICHEP02 – 31st International Conference on High Energy Physics, Amsterdam, 24 – 31 July, 2002

Levan Babukhadia

DØ Forward Proton Detector

- \bullet Working on integration of FPD with the rest of $\mathsf{D} \varnothing$
- First diffractive+jet data by December

ICHEP02 – 31st International Conference on High Energy Physics, Amsterdam, 24 – 31 July, 2002

Levan Babukhadia

DØ Track and Preshower Digital Trigger

• Implemented in ~100 digital boards with same motherboard and different flavors of daughtercards with over 500 Xilinx Virtex FPGAs

- Provides charged lepton id in Level 1 by finding tracks in 4.5° azimuthal trigger sectors of CFT
- Helps with EM-id in Level 1 by reconstructing clusters of energy in CPS scintillator strips
- Helps with Muon-id in Level 1 by sending 6 highest p_T tracks to L1Muon in about 900ns
- Helps with EM-id in forward regions $|\eta|$ < 2.6 by reconstructing clusters of energy in FPS strips
- Helps with charged lepton id in forward regions by confirmation in pre-radiator layers of FPS
- Facilitates matching of preshower and calorimeter objects at quadrant level
- Helps with displaced vertex id in Level 2 Silicon Track Trigger by providing the Level 1 CFT tracks for global SMT+CFT track fitting
- Currently being commissioned

Data Acquisition System

- Gathers raw data from the front-end crates following each Level 2 Accept
- Based on "off the shelf" components
- Single Board Computers (SBCs) read out Level 3 buffers: Intel 1GHz, VME based, dual 100Mb Ethernet, Linux OS
- SBCs send data to a Level 3 node over fast Ethernet switches according to instructions received from the Routing Master

- The routing Master program runs on an SBC in a special crate receiving data from the Trigger Framework
- Cisco Switch sends data to Linux Level 3 Farm nodes
- Event building and Level 3 trigger selections performed by 48-node Linux farm

Level 1 and Level 2 Trigger Performance

Level 2 Calorimeter Jet and EM trigger efficiencies

Level 2 Muon trigger efficiency and rejection

Level 3 Trigger Performance

DØ Detector Run 2b Upgrade

- Present detector was designed for ~2–4fb⁻¹ integrated and ~2×10³² cm⁻²s⁻¹ instantaneous Luminosity
- Run 2b goal ~15fb⁻¹ before LHC Physics
 - Physics motivations: Higgs and Supersymmetry
 - Exceeds radiation tolerance of existing Silicon detector
 - Requires higher instantaneous luminosities, ~5×10³² cm⁻²s⁻¹, trigger upgrades

Silicon Upgrade

Replace Silicon Detector with a more radiation-hard version

New Silicon tracker with innermost layer at 1.78 cm (c.f. 2.71 in Run 2a)

Maintain good pattern recognition coverage $|\eta| < 2$

Trigger Upgrade

Upgrade L1 Track Trigger to narrow roads, improve Track-Cal. matching Upgrade L1/2 Cal. Trigger to use digital filter, isolation, shape cuts Incremental upgrades to Level 2, Level 3 Triggers and online system

Summary and Outlook

- The DØ Detector for Run 2 is operating and collecting physics data
- Enormous progress over the past year in installation, integration, commissioning of the detector and understanding the data
- Performance of the Run 2 DØ detector is very encouraging
 - all subdetectors are operating well
 - software and computing systems are working well
 - we are reconstructing electrons, muons, jets, missing E_T , J/ ψ , W's and Z's and first results already presented at winter/spring and now at summer conferences
- We are working hard on what still needs to be done
 - complete commissioning of Level 1 Track Trigger
 - improve calibration and alignment
 - integrate Level 2 Silicon Track Trigger later this year
 - optimize detector, trigger, and DAQ performance
 - continue working on Run 2b Upgrade Project
- We are on the way to exciting physics, first physics results coming soon, exciting years are ahead!