H1 for HERA II

Daniel Pitzl, DESY

ICHEP Amsterdam, 27.7.2002

- HERA luminosity upgrade
- HERA startup
- H1 upgrades

Luminosity upgrade

- H1 collected $\int \mathcal{L} dt = 120 \, \text{pb}^{-1}$ in 1993 2000.
- Statistics limited for $Q^2 > 2000 \, \mathrm{GeV^2}$, and for many exclusive measurements at lower Q^2 .
- Next goal: 1 fb⁻1, with longitudinally polarized e^{\pm} beams.
- History:
 - 1996 physics workshop
 - 1997 99 design and construction
 - Sep 2000 Jun 2001 shutdown
 - Jul 2001 startup with 920 GeV $\it p$
 - Aug 2001 startup with 27.5 GeV e^+
 - Oct 2001 first ep collisions

ICHEP 2002

New HERA interaction region

54 new warm magnets from St. Petersburg 4 new superconducting magnets from Brookhaven

- e-bending magnets inside experiments
- earlier separation of e and p beams
- p focussing starts at
 11 m instead 26 m
- $\bullet \ \beta_{y,p}^* = 0.18 \, \mathrm{m} \approx \sigma_z$
- $\mathcal{L}=7\cdot 10^{31}/\mathrm{cm}^2\mathrm{s}$ for $I_p=135\,\mathrm{mA}$ and $I_e=55\,\mathrm{mA}$

HERA tunnel

Dec 2000 Old magnets removed

April 2001 New magnets installed

Superconducting beam magnets inside H1

- Tight space in LAr cryostat: $\emptyset < 18 \, \mathrm{cm}$.
- Superconducting magnets without iron.
- Combined function magnets:
 5 coils.
- Movable supports inside H1.
- Stability requirement < 0.1 mm fulfilled.

Synchrotron radiation

Top view, different scales in x and z.

- 10 mrad bend of e-beam $R=400\,\mathrm{m}$, was 1280 m.
- Synchrotron radiation power 26 kW at 55 mA.
- Upstream collimation not possible anymore.
- Wide beam pipe for SynRad beam.
- First downstream absorber at 11 m.
- Collimators against backscattering.
- Tight tolerances.
- Had to increase vertical absorber opening in March shutdown.
- Found optimal beam orbit for H1.

Proton background

- Proton background dominates chamber current and trigger rate.
- Off-momentum hadrons interact with synchrotron radiation absorbers.
- Trigger background can be suppressed.
- Beam pipe vacuum has to improve for chamber currents.

ICHEP 2002

Chamber current vs beam current

- Limit $150-200 \,\mu\text{A}$ to prevent ageing.
- p only: slightly worse than in 2000, improves with vacuum.
- \bullet e^+ only: equal at 27.5 and 12 GeV: all beam-gas.
- ullet ep: increases with I_e : beamgas with increasing pressure. Cold beam pipe stores impurities.
- ullet ep: improvement after vacuum conditioning.
- Need ×10 improvement.

H1 Upgrade

- 19 upgrade projects
- emphasis on
 - Forward tracking: Si and DC
 - Triggering: tracks, low E_t jets
 - Luminosity measurement
 - Leading baryons

Unchanged: Liquid Argon calorimeter, central drift chambers, muon detectors, superconducting solenoid.

Luminosity measurement

- Bethe-Heitler process $ep \Rightarrow ep\gamma$.
- Up to 10 MHz rate at peak luminosity.
- Frequent multiple interactions: pile up in calorimeter.
- Determine rate from fit to energy spectrum, bunch-wise.
- Need fast local DAQ: dual processor PowerPC board.
- So far, HERA delivered $1.0 \, \mathrm{pb}^{-1}$
- Highest specific luminosity so far: $\mathcal{L}_{\mathrm{spec}}^{\mathrm{max}} = 1.7 \cdot 10^{30} / \mathrm{cm}^2 \mathrm{s} \, \mathrm{mA}^2$
- Design $\mathcal{L}_{\mathrm{spec}} = 1.9 \cdot 10^{30} / \mathrm{cm}^2 \mathrm{s} \, \mathrm{mA}^2$

Silicon Tracking

New elliptical excentric beam pipe: BeAl, 1% X₀

FST:

- New forward silicon tracker covering $7^{o} 17^{o}$.
- 12 planes with strips in 3 projections.
- S/N = 32 for singlemetal planes.

CST:

- 2-layer Si vertex detector for c and b-tagging operational since 1997.
- Adapted to elliptical beam pipe shape.
- Use radiation hard readout chips (DMILL).

BST:

- 12-plane backward silicon for low-angle tracking operational since 1997.
- Adapted to new geometry.
- 4 Si pad planes for triggering.

Forward Tracking

Fast Track Trigger

D^* finder ΔM :

- Use 12 of 56 wire layers in the Central Jet Chamber.
- Independent FADC, pipeline, hit finding.
- Coarse track finding in $r-\phi$: 2.2 μ s with content addressable memory in large FPGAs.
- Refined track finding and eam-spot constrained 3-D track fit: $22 \mu s$ with DSPs.
- Invariant mass calculation: $100 \,\mu\text{s}$ with PowerPC CPUs.
- To be commissioned in autumn.

Very Forward Proton Spectrometer

Proton envelopes for $E_p/E_{\rm beam}=0.98$ $(x_{I\!\!P}=0.02).$

- Measure diffractively scattered protons
- Use first proton bending magnets as spectrometer.
- 2 Roman pots with fiber tracking at 220 m from IP.
- Optimized for acceptance in $x_{I\!\!P}=0.005$ to 0.03 and in |t| from 0.5 GeV² down 0.
- Requires bypass for cryogenic lines and new warm beam pipe.
- Ready for installation in 10 week shutdown early 2003.

Polarimeter

- Expect e^{\pm} polarization of 40–50%
- New spin rotators for long. pol. in H1 and ZEUS
- Existing transverse polarimeter upgraded: DAQ, Si
- Longitudinal polarimeter upgrade:
 Fabry-Perot lasrer cavity
- ullet Goal: $\sigma_P/P = 1\%/\text{bunch/min}$ statistical
- $\sigma_P/P < 0.5\%$ systematic
- Search for right-handed couplings at 1% level
- Ready for installation early next year

Summary

- Challenging upgrade of machine and experiments completed.
- Rough startup period:
 - Synchrotron radiation background tolerable in H1.
 - Proton background requires better vacuum.
 - Gradual increase of beam currents until the end of the year.
- H1 is ready to take high Q^2 data.
- Dedicated projects for selected final states underway:
 - Drift chamber Fast Track Trigger: commission in autumn
 - LAr calorimeter Jet Trigger: early next year.
 - Very Forward Proton Spectrometer: install early next year.

• Goal: collect $1 \, \text{fb}^{-1}$, equally shared between e^+p and e^-p and with both lepton polarisations, until the end of 2006.