

Recent Developments in Crystal Calorimeters featuring the CMS PbWO₄ Electromagnetic

RELLE

GLAST

Suzanne GASCON-SHOTKIN Institut de Physique Nucleaire de Lyon/Universite Claude Bernard Lyon I For the CMS ECAL Collaboration

ICHEP2002

Amsterdam 27 July

: Gamma Ray Large Area Space Telescope

'Recent Developments in Crystal Calorimetry' ICHEP2002

The 'Why' and 'How' of Crystal Calorimeters II

Design issues in Crystal Calorimetry:

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I 'Recent Developments in Crystal Calorimetry' ICHEP2002

The 'Why' and 'How' of Crystal Calorimeters III

Adapted from R.-Y. ZHU, presentation at UCSC Linear Collider Retreat, June 2002

Crystal	NaI(Tl)	CsI(Tl)	CsI	BaF ₂	CeF ₃	BGO	PbWO ₄	LSO(Ce)	GSO(Ce)
Density (g/cm ³)	3.67	4.51	4.51	4.89	6.16	7.13	8.3	7.40	6.71
Radiation Length (cm)	2.59	1.85	1.85	2.06	1.68	1.12	0.9	1.14	1.37
Molière Radius (cm)	4.8	3.5	3.5	3.4	2.63	2.3	2.0	2.3	2.37
Interaction Length (cm)	41.4	37.0	37.0	29.9	26.2	21.8	18	21	22
Refractive Index ^a	1.85	1.79	1.95	1.50	1.62	2.15	2.2	1.82	1.85
Hygroscopicity	Yes	Slight	Slight	No	Slight	No	No	No	No
Luminescence ^b (nm)	410	560	420	300	300	480	560	420	440
(at peak)	The States	A States	310	220	340	Con Cont	420	In Carried	
Decay Time ^b (ns)	230	1300	35	630	25	300	50	40	60
			6	0.9	8	No.	10		
Light Yield ^{b,c} (%)	100	45	5.6	21	8	9	0.1	75	30
(Room temp)			2.3	2.7		St. Color	0.6	P. Lake	
d(LY)/dT ^b (%/ °C)	~0	0.3	-0.6	-2	<0.1	-1.6	-1.9	?	?
				~0					
Experiment	Crystal	CLEO-II	kTeV	L*,	L3P	L3	CMS,	?	?
	Ball	BaBar, BELLE	Mar and	GEM		A Charles	ALICE	A MALLER	

a. at peak of emission; b. up/low row: slow/fast component; c. measured by PMT of bi-alkali cathode.

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

'Recent Developments in Crystal Calorimetry' ICHEP2002

A Crystal Calorimeter Timeline

The CMS PbWO₄ Electromagnetic Calorimeter

Crystals: Physical and Optical Aspects I

RL

Crystals: Physical and Optical Aspects II

Crystals: Technological Aspects

Photodetection: Si Avalanche Photodiodes (APD)

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

'Recent Developments in Crystal Calorimetry' ICHEP2002

RL

Photodetection: Vacuum Phototriodes (VPT)

To guide the eye (ie

not a fit...)

2.5

11

Passport PG value

1.5

- Active area of ~ 280 mm²/crystal
- Q.E. ~ 20% at 420 nm

•<10 % decrease in response after 10 years of operation</p>

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

'Recent Developments in Crystal Calorimetry' ICHEP2002

20

10

R.M. Brown. RAL/CLRC

Treatment of Photoelectric Signals

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

Detector Calibration

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

'Recent Developments in Crystal Calorimetry' ICHEP2002

Scintillation Light Loss Monitoring

Results from Test Beam

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

'Recent Developments in Crystal Calorimetry' ICHEP2002

Assembly/QC Status: Barrel

Assembly/QC Status: Preshower

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

Assembly/QC Status: Photodetectors

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

Conclusions

As we speak, a complete CMS ECAL module with 100 channels equipped with near-final VFE electronics is going into beam: First large-scale system test.

In summer 2003 the first complete CMS ECAL supermodule (1/36 th), equipped with final light-to-light electronics, will be beam-tested.

The CMS ECAL is by more than a factor of 5 the largest crystal calorimeter ever built, with 10% of some components already fabricated.

The range of applications for crystal calorimeters has never been as wide, crystals remain the medium of choice for precision energy measurements.

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

'Recent Developments in Crystal Calorimetry' ICHEP2002

Acknowledgements

Many thanks to:

The members of the CMS ECAL Collaboration

- The KTeV (esp. E. Blucher), BaBar (esp. Y. Karyotakis, M. Kocian), ALICE (esp. M. Ippolitov, V. Manko) and BTeV (esp. S. Stone, A. Vasiliev) collaborations
- And last but not least, the organizers and session convenors of ICHEP2002!!
 SIST INTERNATIONAL CONFERENCE ON CONTRACT PHYSICS AMSTERDAM

Cooling

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

'Recent Developments in Crystal Calorimetry' ICHEP2002

 $\sigma_{\text{series}}^2 = \frac{4kT.RC_2 0.7}{2\tau}$ $\sigma_{\text{parallèle}}^{^{2}} = (I_{ds} + I_{dv}M^{^{2}}F).q\tau$ $\sigma_{\text{série}}^{^{2}} = \frac{4kT.RC^{^{2}}}{2\tau} \frac{0.7}{g}$ **B**=4T, 25ns LHC om-temp Li

rate,

Integ dose=2.4kGy→

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

22365

22500

2214

Anode response of production VPTs at **1.8T (averaged** over 8⁰ – 25⁰), in units of e⁻/MeV (using data from beam tests with **PWO**), plotted versus the product of photocathode efficiency and gain, as measured by RIE at B=0T

Ratio: Gain(4T)/Gain(0T) For a sample of production VPTs (Measured at Brunel University)

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

Suzanne GASCON-SHOTKIN IPNL/UCB Lyon I

'Recent Developments in Crystal Calorimetry' ICHEP2002

