Photon Colliders

Jeff Gronberg LLNL ICHEP, Amsterdam July 24 – 31, 2002

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

γγ collisions – Casting new light on Particle Interactions

- The workhorses of particle physics at the energy frontier have been e⁺e⁻ and pp collisions
 - Stable, charged particles can be accelerated and focused
 - But other particle interaction can have unique physics reach
- Virtual γγ collisions have been studied at e⁺e⁻ machines
- Technique for producing real photon collisions through Compton Compton backscattering proposed by Ginzburg et al. in 80's
 - The technology is becoming mature to produce collisions of real photons at high energy

- Production is model independent, electromagnetic coupling only
- Control of photon polarization allows couplings to be probed
- See talk of S. Soldner-Rembold for complete discussion of γγ physics reach

Photon collisions provide a unique probe of physics at high energies

The existence of new generations of quarks and leptons can thus be detected in regions not directly accessible

Photon Colliders – The marriage of lasers and electron linear colliders

Simulations and parameterizations describe the luminosity

- Compton backscattering is complicated
 - Polarization dependent
 - Energy dependent
 - Laser Intensity dependent
 - Energy / Angle correlation
- Full simulations exist
 - Code from V. Telnov
 - CAIN simulation from P.
 Chen *et al*.
- Luminosities have been parameterized
 - CompAZ from A. Zarnecki
 - CIRCE from T. Ohl

From hep-ex/0207021 A Zarnecki

Required laser technology pushes the state of the art

- High Average Power, Short-Pulse Lasers
 - Terawatt peak power 1 Joule in 1 ps
 - 20 kilowatts average power
 - Near diffraction limit
 - Time structure matched to the electron beam
- Laser focusing optics
 - Co-located in the beam pipe vacuum
 - Cannot interfere with:
 - The accelerator
 - The detector

The Mercury laser will utilize three key technologies: gas cooling, diodes, and Yb:S-FAP crystals

MERCURY output must be time structured to match the electron bunches

12 Lasers x 10Hz = 120Hz 1, 100 Joule pulse -> 100, 1 Joule pulses

• Laser plant for NLC / JLC < \$200M

MERCURY commissioning has begun One amplifier head with 4 of 7 crystals installed

Status

- Producing 10 Joule pulses at 0.1 Hz •Theoretical max 14 Joules w/ 4 crystals
- Operation of two heads with 14 crystals
 within the next year
- Installation of new front end for 10Hz operation

NLC solution might be adapted to TESLA, but TESLA bunch spacing opens new options

- A single light pulse can travel around the ring and hit every bunch in the TESLA train
 - DESY and Max Born Institute will prototype a scale model
 - Tolerances are tight, but enormous savings in laser power

System Integration – Optics/Beampipe

- Essentially identical to the e⁺e⁻ IR
- All masking preserved
- 30 mRad x-angle
- Extraction line ± 10 mRadian
- New mirror design 6 cm thick, with central hole 7 cm radius.
 - Remove all material from the flight path of the backgrounds

γγ Engineering Test Facility at SLC Revive SLC and install beampipe with optics

Conclusions

- Photon collisions provide new physics reach
- Laser technology is maturing, driven by other applications
 - Core laser technology will be prototyped and demonstrated within the year
- A basic design for the integration of the optics with the detector/accelerator exists
 - Ready for prototyping and demonstration at a low energy linear e⁺e⁻ collider