The **BEPCII** Project

Hesheng Chen Institute of High Energy Physics Chinese Academy of Sciences

Outline

- 1. **BEPC/BES** and physics results
- 2. BEPCII
- 3. BESIII
- 4. Budget and Schedule
- 5. Summary

Beijing Electron Positron Collider: beam energy 1 – 2.8 GeV Physics Run: Luminosity 10³¹cm⁻²s⁻¹ @ 1.89GeV, 5 month/year Synchrotron Radiation Run: 140mA @ 2.2 GeV, 3 month/year

BES has the world largest J/\psi and \psi'samples plus: 2-5 GeV R scan, \tau threshold, 8 pb⁻¹ \psi["], 22.3pb⁻¹ Ds ...

Main Physics Results from BES

- **Precision measurement of** τ **mass:** 3 σ changed, factor of 10 improved in accuracy. \rightarrow lepton universality.
- Systematic study of ψ' decays: new VT suppressed decay modes and First measurement of $B(\psi(2S) \rightarrow \tau + \tau -)$.
- Precision R Measurement at 2-5GeV: ΔR/R: 15-20 %
 → 6.6%. Large impact on the SM Fit for Higgs mass,
 α (M_z²) and g-2 experiment
- Measurement of f_{Ds} from pure leptonic decay of Ds.
- **Measure Br**($D_S \rightarrow \varphi \pi$) in a model independent way.
- 116 entries in PDG from BES.

Future of BEPC: High precision measurements in charm energy region (2-4 GeV)

- Test of Standard Model with high statistics
- QCD and hadron production mechanism
- Search for new phenomena

Major Upgrade: BEPCII

- High luminosity machine → High statistics
 increasing by two orders of magnitudes
- − High performance detector → Small systematic errors
 - improve γ measurement, PID, $\Delta P/P$ and acceptance
 - adapt to high event rate and short bunch spacing

Physics Features in BEPCII

- Transition between continuum and resonance's, perturbative and non-perturbative QCD
- Rich of resonance's, charmonium and charmed mesons.
- New type of hadronic matter predicted: glueball and quark-gluon hybrid
- Advantages at threshold :
 - Large production cross section,
 - Low multiplicity,
 - Pure initial state,
 - Higher S/B

BEPC II: Physic Goals

- Precise measurements of $J/\psi_{\gamma} \psi' \& \psi''$ Decays
- Precise measurement of CKM matrix.
- Light hadron spectroscopy & excited baryon
- D & Ds physics: decays, $f_{D_{y}}$, $f_{D_{s}}$, D^{0} \overline{D}^{0} mixing
- Test VDM, NRQCD, PQCD, study $\rho\pi$ puzzle
- Mechanism of hadron production, low energy QCD and precision measurement of R
- τ physics: charged current, m $_{\nu\tau}$ and m $_{\tau}$
- Search for new particles: glueballs, quark-gluon hybrid, ¹P₁, exotic states...
- Search for new phenomena: rare decays, lepton number violation, CP violation

BEPCII: high luminosity double-ring collider

Build new ring inside existing ring, two half new rings and two half old rings cross at two interaction regions, forming a double ring collider.

BEPCII: Double Ring Design

- Horizontal collision with large crossing angle: 11 mrad.
- 93 bunch / ring with total current ~ 1A , increasing from 20mA
- 500MHz RF with SC cavities and micro β magnets: reduce β_y 5cm \rightarrow 1.5cm
- Design Luminosity ~ 10^{33} cm⁻² s⁻¹ @ 1.89GeV
- Dedicated Synchrotron Radiation: 250mA @ 2.5GeV
- e⁺ Injection : 50mA/min. @ 1.89 GeV
- Estimated Cost ~ 77 M US\$ (640 M Chinese Yuan)
- Lumi. is factors of 3 7 higher than CESRc

Event Rates Expected in BES III

Particle	Energy	Single Ring (1.2f _b ⁻¹)	Double Ring (4f _b ⁻¹)
D ⁰	ψ″	7.0×10 ⁶	2.3 ×10 ⁷
D +	ψ″	5.0×10 ⁶	1.7×10 ⁷
Ds	4.14GeV	2.0×10 ⁶	4×10 ⁶
τ+τ-	3.57GeV 3.67GeV	0.6×10 ⁶ 2.9×10 ⁶	0.2×10 ⁷ 0.96×10 ⁷
J /ψ		3-4 ×10 ⁹	6-10×10 ⁹
ψ		0.6×10 ⁹	2×10 ⁹

- Adapt to high event rate of BEPCII: 10³³cm⁻² s⁻¹ and bunch spacing 8ns
- Reduce sys. errors to match high statistics photon measurement, PID...
- Increase acceptance

Data Acquisition: Event rate = 3KHz Thruput ~ 50 MB/s

Expected Physics Results from BESIII

Monte Carlo simulation show: with lum. increasing by two-orders of magnitude, a factor of 3 – 7 higher than CLEOc, BES III can obtain many important results in tau-charm physics

Topics:

- Precise measure CKM parameters
- Precise R measurement
- Search for glueballs, determine spin and parity
- Search ¹P₁

Physics example 1:

Precise measurement of CKM matrix

- Pure-leptonic and semi-leptonic decay Br. of D mesons to determine V_{cd} & V_{cs} (5 fb $^{-1}$ \rightarrow accuracy of 0.6 1.5%)
- Hadronic decay Br. of D mesons to determine V_{cb} (5 fb⁻¹ \rightarrow accuracy of 0.4-0.6%)
- $f^{}_D$ and $f^{}_{Ds}$ (with $\delta f^{}_{Ds}/f^{}_{Ds}\approx$ 3.5 %) for $\,V^{}_{td}$ and $\,V^{}_{ts}$
- Semi-leptonic shape of D and Ds decay for \boldsymbol{V}_{ub}
- Test unitarity of CKM matrix

Physics exam. 2: R measurement (2-4 GeV)

Error Source	BESII reach(%)	BESIII goal(%)
Luminosity	2 - 3	1
Selection effi.	3 - 4	1 - 2
Trigger effi.	0.5	0.5
Radiation corr.	1 - 2	1
hadron decay model	2 - 3	1 – 2
Statistical	2.5	
Total error	6 – 7	2 - 3

Physics example 3: search for glueball

Physics example 4: Search for ¹P₁

$$\psi(2S) \rightarrow \pi^{0} P_{1} \rightarrow \gamma \gamma \gamma$$
$$\eta_{c} \rightarrow \gamma \gamma \gamma 4K$$
Br = (1.2 - 3.3) × 10⁻⁶
450-1200 evts/year
Background:
$$\psi(2S) \rightarrow \gamma \chi_{c1}, \gamma \chi_{c2,,} \eta \psi, \pi^{0} \pi^{0} \psi$$

Budget

• The budget estimated is about 640M RMB (77M\$)

Linac:	44 M
Machine:	229 M
Detector:	210 M
Utility and infrastructure:	97 M
Contingency	60 M

- Chinese Government agreed to provide 540M RMB (65M\$), covering most of cost of machine and about ³/₄ of the cost of the detector.
- Intl. Contribution and collaboration needed.
- Funding paper work is under way.

Schedule: Physics run by end of 2006

- Feasibility Study Report of BEPC II has been submitted to the funding agency .
- Technical Design Report to be submitted by summer 02.
- Construction started by Autumn 02.
- Linac upgrade + BESII detector removing Summer of 2004.
- Preliminary date of the machine long shutdown for installation : April Dec. 2005.
- Tuning of Machine without detector : Jan.- May. 2006.
- BESIII detector moved into beam line: June- Aug. 2006.
- Machine-detector tuning: Sept. Dec. 2006.
- <u>Physics</u> run by end of 2006.

Intl. Collaboration on BEPCII / BESIII

- Construction of BEPCII/BESIII and obtaining world class results are big challenge to Chinese HEP physicists
- **BESIII** will be competitive in producing very interesting physics results in the precision measurement frontier, and attract intl. collaborator.
- Intl. collaboration could share the cost, help to meet the technical challenges, better detector performance and physics analysis.
- Welcome to joint BESII ! Many physicists from Japan, US and Europe show strong interest in both to join the collaboration and technical transfer.

- BEPCII: double-ring collider with micro- β . Lumi. will increased by a factor of 100 in energy range of J/ψ and ψ' .
- BESIII with High performance (SC magnet, crystal calorimeter, MDCIV...) to adapt high event rate and to provide small systematic errors.
- BEPC II / BES III are competitive with CESRc/CLEOc, specially in J/ψ and ψ' .
- Total cost estimation is 77M\$.
- Chinese Government approved BEPCII, and provides 65M\$.
- Schedule: start physics running by the end of 2006.
- International collaboration and contribution are essential to accomplish this challenging and exciting project on schedule and budget.